

mobius

Area of a Circle - Area and Equation to Radius (Pi Value)

1	If the area of this circle is 2, what it its radius?	$egin{array}{ c c c c } A & B & & & & & & & & & & & & & & & & & & &$	$r = \sqrt{\frac{2 \cdot \pi}{2}}$	2	If the area of this circle is 6, what it its radius?	$R = 6 \cdot \sqrt{\frac{2}{r}}$	$r = \sqrt{\frac{2 \cdot \pi}{\epsilon}}$	$r=\sqrt{rac{6}{2\cdot\pi}}$
	$=\pi\cdot r^2 \ =\pi\cdot r^2$	D	V 2	A	$=\pi\cdot r^2 \ =\pi\cdot r^2$	D		ν 2·π
3	If the area of this circle is 8, what it its radius?	$egin{array}{ c c c c c } A & B & & & & & & & & & & & & & & & & &$	$\frac{8}{8\cdot\pi}r=\sqrt{rac{8}{\pi}}$	4	If the area of this circle is 5, what it its radius?	$r=\sqrt{rac{5}{\pi}}$	$r=\sqrt{rac{5}{2\cdot\pi}}$	$r=5\cdot\sqrt{rac{2}{\pi}}$
	$=\pi\cdot r^2 \ =\pi\cdot r^2$	D		A	$=\pi\cdot r^2 \ =\pi\cdot r^2$	D		
5	If the area of this circle is 3, what it its radius?	A B $r=\sqrt{rac{3}{2\cdot\pi}}r=$	$\int rac{3}{\pi} r = 3 \cdot \sqrt{rac{2}{\pi}}$	6	If the area of this circle is 9, what it its radius?	A $r=\sqrt{rac{2\cdot\pi}{9}}$	$r=\sqrt{rac{9}{2\cdot\pi}}$	$r=\sqrt{rac{9}{\pi}}$
A	$=\pi\cdot r^2 \ =\pi\cdot r^2$	$r=\sqrt{rac{2\cdot\pi}{3}}$		A 9	$=\pi\cdot r^2 \ =\pi\cdot r^2$			
7	If the area of this circle is 10, what it its radius?	A B $r=\sqrt{rac{10}{2\cdot\pi}}r=10\cdot$	$\int ^2 \sqrt{rac{2}{\pi}} r = \sqrt{rac{10}{\pi}}$	8	If the area of this circle is 7, what it its radius?	$r=\sqrt{rac{2\cdot\pi}{7}}$	$r=\sqrt{rac{7}{\pi}}$	$r=7\cdot\sqrt{rac{2}{\pi}}$
A10	$=\pi\cdot r^2 \ =\pi\cdot r^2$	$r=\sqrt{rac{2\cdot\pi}{10}}$		A	$=\pi\cdot r^2 \ =\pi\cdot r^2$	$r=\sqrt{rac{7}{2\cdot\pi}}$	ν π	
		, 10				, 2 //		