

mobius

Complex Numbers - Rectangular Form to Polar Form (Radians)

	E. 10		E. 10	
	Find the polar form in radians of this complex number	$4.8(cos(0.2\pi\ rad) + i \cdot sin(0.2\pi\ rad))$	Find the polar form in radians of this complex number	$10.1(cos(1.8\pi\;rad)+i\cdot sin(1.8\pi\;rad))$
		$6\overset{ extbf{B}}{.4}(cos(0.8\pi\ rad)+i\cdot sin(0.8\pi\ rad))$	Humber	$9(cos(1.7\pi\ rad) + i \cdot sin(1.7\pi\ rad))$
		$5(cos(0.2\pi\;rad) + i \cdot sin(0.2\pi\;rad))$		$4.2(cos(1\frac{11}{18}\pi\ rad) + i \cdot sin(1\frac{11}{18}\pi\ rad))$
		$6.7(cos(0.1\pi\ rad) + i \cdot sin(0.1\pi\ rad))$	ረ — 42	$\frac{\mathcal{D}}{7.7}(cos(1.6\pi\;rad) + i \cdot sin(1.6\pi\;rad))$
		$4.1(cos(0.3\pi\ rad) + i \cdot sin(0.3\pi\ rad))$) 10	$6.4(cos(1.6\pi\ rad) + i \cdot sin(1.6\pi\ rad))$
		$5 \overset{ extsf{F}}{(cos(0.1\pi\;rad) + i \cdot sin(0.1\pi\;rad))}$		${\mathsf F}_{\mathsf Ccos(1.7\pi\;rad)+i\cdot sin(1.7\pi\;rad))}^{\mathsf F}$
3	Find the polar form in radians of this complex number	$8.5(cos(1.3\pi\;rad) + i \cdot sin(1.3\pi\;rad))$ 4	Find the polar form in radians of this complex number $3-5i$	$10(cos(1.6\pi\ rad) + i \cdot sin(1.6\pi\ rad))$
		$6.6(cos(1.7\pi\;rad)+i\cdot sin(1.7\pi\;rad))$		$1\overline{0.2}(cos(0.4\pi\ rad) + i \cdot sin(0.4\pi\ rad))$
		$16(cos(1.8\pi\ rad) + i \cdot sin(1.8\pi\ rad))$		$10 (cos(0.3\pi\ rad) + i \cdot sin(0.3\pi\ rad))$
		$9\overset{ ext{\scriptsize P.3}}{ ext{\scriptsize $(cos(1.9\pi\ rad)+i\cdot sin(1.9\pi\ rad))$}}$		$\frac{D}{5.8(cos(1.7\pi\;rad) + i \cdot sin(1.7\pi\;rad))}$
		$ ilde{6.2}(cos(1.9\pi\ rad) + i \cdot sin(1.9\pi\ rad))$		$\overset{\textstyle F}{11.4} (cos(1.6\pi\ rad) + i \cdot sin(1.6\pi\ rad))$
		$8.4(cos(1.9\pi\ rad)+i\cdot sin(1.9\pi\ rad))$		$8 \overline{(cos(0.3\pi\ rad) + i \cdot sin(0.3\pi\ rad))}$
5	Find the polar form in radians of this complex number	$10.8(cos(0.2\pi\;rad) + i \cdot sin(0.2\pi\;rad))$ 6	Find the polar form in radians of this complex number $2+2i$	$2(cos(2\pi\;rad) + i \cdot sin(2\pi\;rad))$
		$8\overset{ extbf{B}}{.2}(cos(0.3\pi\;rad)+i\cdot sin(0.3\pi\;rad))$		$B(cos(rac{1}{6}\pi\ rad) + i \cdot sin(rac{1}{6}\pi\ rad))$
		$5.8(cos(0.2\pi\;rad)+i\cdot sin(0.2\pi\;rad))$		$2.8(cos(0.3\pi\;rad)+i\cdot sin(0.3\pi\;rad))$
		$5\overset{ ext{\scriptsize P}}{ ext{\scriptsize -4}}(cos(0.9\pi\;rad)+i\cdot sin(0.9\pi\;rad))$		$\frac{1}{1.2}(cos(1.7\pi\ rad) + i \cdot sin(1.7\pi\ rad))$
		$1\overline{b}.1(cos(0.2\pi\ rad) + i \cdot sin(0.2\pi\ rad))$		$1 = \underbrace{E_{1.2}(cos(1.3\pi\;rad) + i \cdot sin(1.3\pi\;rad))}_{1.2}$
		$\overbrace{6(cos(0.3\pi\;rad)+i\cdot sin(0.3\pi\;rad))}^{ extsf{F}}$		
7	Find the polar form in radians of this complex number	$7.2(cos(1.8\pi\ rad) + i \cdot sin(1.8\pi\ rad))$ 8	Find the polar form in radians of this complex number	$A.2(cos(1.4\pi\;rad)+i\cdot sin(1.4\pi\;rad))$
		$9\overset{P}{.5}(cos(1.7\pi\ rad) + i \cdot sin(1.7\pi\ rad))$		$4\overset{ extbf{B}}{(}cos(1.7\pi\;rad)+i\cdot sin(1.7\pi\;rad))$
		$7.8(cos(1\frac{5}{18}\pi\ rad) + i \cdot sin(1\frac{5}{18}\pi\ rad))$		$3.1(cos(1.8\pi\ rad)+i\cdot sin(1.8\pi\ rad))$
		$7.8(cos(1\frac{5}{18}\pi\ rad) + i \cdot sin(1\frac{5}{18}\pi\ rad)) \\ 9.5(cos(0.4\pi\ rad) + i \cdot sin(0.4\pi\ rad))$		$3.6(cos(1.9\pi\ rad)+i\cdot sin(1.9\pi\ rad))$
		$8.1(cos(1.5\pi\ rad) + i \cdot sin(1.5\pi\ rad))$		$\overset{F.}{3.1}(cos(0.4\pi\ rad) + i \cdot sin(0.4\pi\ rad))$
		$15.6(\cos(\frac{1}{3}\pi\ rad) + i \cdot \sin(\frac{1}{3}\pi\ rad))$		