

## mobius

## **Exponential Function Solution Equation Decay (Continuous) Equation to Starting**



**Value**Rearrange this equation to solve for the starting population given this model of a continuous decline of a whale population?

| 847 | = | $P_0$ | $\cdot e^{(\cdot)}$   | -0.02·3)             |
|-----|---|-------|-----------------------|----------------------|
| 847 | = | $P_0$ | $\cdot e^{(\bar{z})}$ | -0.02·3 <sub>/</sub> |

Rearrange this equation to solve for the starting population given this model of a continuous decline of a bird population?

$$247 = P_0 \cdot e^{(-0.06 \cdot 8)}$$

$$^{^{\mathsf{A}}}P_{0}=rac{847}{e^{(rac{-0.02}{3})}}$$

$$P_0 = rac{847}{e^{(-0.02\cdot 3)}}$$

|   | Α | $P_0 = rac{e^{(-0.06 \cdot 8)}}{247}$ | B $P_0 = rac{247}{e^{(rac{-0.06}{8})}}$ |
|---|---|----------------------------------------|-------------------------------------------|
| - | С | $P_0 = rac{247}{e^{(-0.06\cdot 8)}}$  |                                           |
|   |   |                                        |                                           |

3 Rearrange this equation to solve for the starting population given this model of a a continuously declining bacteria population?

$$558 = P_0 \cdot e^{(-0.04 \cdot 9)}$$

| inge this equation to | solve for the  | starting pop | ulation  | given thi | S                                                                                                                      |
|-----------------------|----------------|--------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------|
| model of a continuo   | ous decline of | f a whale po | pulation | 1?        |                                                                                                                        |
| 3                     |                |              |          |           | ange this equation to solve for the starting population given thi model of a continuous decline of a whale population? |

$$407 = P_0 \cdot e^{(-0.06 \cdot 9)}$$

5 Rearrange this equation to solve for the starting population given this model of a a continuously declining bacteria population?

Rearrange this equation to solve for the starting population given this model of a a continuously declining bacteria population?

$$511 = P_0 \cdot e^{(-0.02 \cdot 8)}$$

$$668 = P_0 \cdot e^{(-0.02 \cdot 9)}$$

$$\begin{array}{|c|c|c|c|}\hline \mathsf{A} & & P_0 = \frac{\mathsf{5}11}{e^{(-0.02 \cdot 8)}} & & \mathsf{B} & & P_0 = \frac{e^{(-0.02 \cdot 8)}}{\mathsf{5}11} \\ \hline \mathsf{C} & & P_0 = \frac{\mathsf{5}11}{e^{(\frac{-0.02}{8})}} & & & & \\ \hline \end{array}$$

$$^{^{\mathsf{A}}}P_0 = rac{\mathsf{668}}{e^{(rac{-0.02}{9})}} \,\, egin{align*}^{^{\mathsf{B}}}P_0 = rac{\mathsf{668}}{e^{(-0.02 \cdot 9)}} \end{array}$$

7 Rearrange this equation to solve for the starting population given this model of a a continuously declining bacteria population?

Rearrange this equation to solve for the starting concentration given this model of a continuous reduction of a toxin concentration?

$$243 = P_0 \cdot e^{(-0.09 \cdot 8)}$$

$$532 = C_0 \cdot e^{(-0.04 \cdot 3)}$$

| Α | $P_0 = rac{243}{e^{(-0.09\cdot 8)}}$ | В | $P_0 = rac{243}{e^{(rac{-0.09}{8})}}$ | Α |
|---|---------------------------------------|---|-----------------------------------------|---|
| С | $P_0=rac{e^{(-0.09\cdot 8)}}{243}$   |   |                                         | С |
|   |                                       |   |                                         |   |