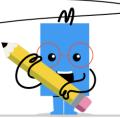


mobius

Exponential Function Solving - Decay (Continuous) Equation to Starting Value



Solve for the starting concentration given this model of a continuous decay of a radioactive material?

(-0.02.4)

2 Solve for the starting concentration given this model of a continuous decay of a radioactive material?

830 =
$$R_0 \cdot e^{(-0.02 \cdot 4)}$$

$$\mathbf{534} = R_0 \cdot e^{(-0.03 \cdot 9)}$$

Α	$R_0=rac{R}{e^{(-r\cdot t)}}$	В	$0+R_0=rac{R}{e^{(rac{ au}{t})}}$	Α	$0+R_0=rac{e^{(-r\cdot t)}}{R}$	В	$9+R_0=\frac{R}{e^{(\frac{-r}{t})}}$
С	$2+R_0=\frac{e^{(-r\cdot t)}}{R}$	D	$4+R_0=\frac{e^{(-r\cdot t)}}{R}$	С	$2+R_0=\frac{R}{e^{(\frac{-r}{t})}}$	D	$R_0=rac{R}{e^{(-r\cdot t)}}$

3 Solve for the starting population given this model of a continuous decline of a whale population?

Solve for the starting population given this model of a a continuously declining bacteria population?

$$466 = P_0 \cdot e^{(-0.09 \cdot 6)}$$

$$347 = P_0 \cdot e^{(-0.02 \cdot 7)}$$

1								
	$A \qquad \qquad 0 + P_0 = rac{e^{(-r \cdot t)}}{P}$	В	$9+P_0=\frac{e^{(-r\cdot t)}}{P}$	Α	$P_0 = \frac{P}{e^{(-r \cdot t)}}$	В	$8+P_0=\frac{e^{(-r\cdot t)}}{P}$	
	$P_0=rac{P}{e^{(-r\cdot t)}}$	D	${\sf 2}+P_0=\frac{e^{(-r\cdot t)}}{P}$	С	$6+P_0=\frac{e^{(-r\cdot t)}}{P}$	D	$4+P_0=\frac{e^{(-r\cdot t)}}{P}$	
ı								

5 Solve for the starting population given this model of a a continuously declining bacteria population?

Solve for the starting concentration given this model of a continuous decay of a radioactive material?

$$213 = P_0 \cdot e^{(-0.09 \cdot 7)}$$

$$140 = R_0 \cdot e^{(-0.05 \cdot 7)}$$

Α	$4+P_0=\frac{P}{e^{(\frac{rr}{t})}}$	В	$3+P_0=rac{P}{e^{(rac{rr}{t})}}$	Α	$4+R_0=\frac{R}{e^{(\frac{-r}{t})}}$	В	$R_0 = rac{R}{e^{(-r \cdot t)}}$
С	$P_0 = \frac{P}{e^{(-r \cdot t)}}$	D	$6+P_0=\frac{P}{e^{(\frac{-r}{t})}}$	С	$3+R_0=rac{e^{(-r\cdot t)}}{R}$	D	$2+R_0=\frac{R}{e^{(\frac{-r}{t})}}$

7 Solve for the starting concentration given this model of a continuous reduction of a toxin concentration?

Solve for the starting concentration given this model of a continuous reduction of a toxin concentration?

$$458 = C_0 \cdot e^{(-0.03 \cdot 9)}$$

$$521 = C_0 \cdot e^{(-0.02 \cdot 7)}$$

Α	$0+C_0=rac{C}{e^{(rac{-r}{t})}}$	В	$1+C_0=\frac{e^{(-r\cdot t)}}{C}$	Α	$C_0 = rac{C}{e^{(-r \cdot t)}}$	В	$0 + C_0 = \frac{e^{(-r \cdot t)}}{C}$
C	$C_0=rac{C}{e^{(-r\cdot t)}}$	D	$6+C_0=rac{C}{e^{(rac{-r}{t})}}$	С	$6+C_0=\frac{C}{e^{(\frac{-r}{t})}}$	D	${\sf 3}+C_0=\frac{e^{(-r\cdot t)}}{C}$