

mobius

Exponential Function Solving - Decay (Continuous) - Equation to Time

Solve for the time given this model of a continuous decline of a bird population?

2 Solve for the time given this model of a a continuously declining bacteria population?

$$185 = 300 \cdot e^{(-0.06 \cdot t)}$$

$$185 = 300 \cdot e^{(-0.06 \cdot t)} | 830 = 900 \cdot e^{(-0.04 \cdot t)}$$

Α	$5+t=-rac{r}{\lnrac{P}{P_0}}$	В	$3+t=-\frac{\ln P\cdot P_0}{r}$	Α	$t=-rac{\lnrac{P}{P_0}}{r}$	В	$1+t=-\frac{\ln P\cdot P_0}{r}$
С	$t=-rac{\lnrac{P}{P_0}}{r}$	D	$6+t=-rac{r}{\lnrac{P_0}{P_0}}$	С	$8+t=-\frac{\ln P\cdot P_0}{r}$	D	8 $+$ $t=-rac{r}{\lnrac{P}{P_0}}$

3 Solve for the time given this model of a continuous decay of a radioactive material?

Solve for the time given this model of a a continuously declining bacteria population?

$$426 = 800 \cdot e^{(-0.07 \cdot t)}$$

$$501 = 600 \cdot e^{(-0.02 \cdot t)}$$

Α	$9+t=-rac{\ln R\cdot R_0}{r}$	В	$4+t=-rac{\ln R\cdot R_0}{r}$	Α	$4+t=-\frac{\ln P\cdot P_0}{r}$	В	$0+t=-rac{\ln P\cdot P_0}{r}$
С	$t=-rac{{\sf ln}rac{R}{R_0}}{r}$	D	$7+t=-rac{r}{\lnrac{R}{R_0}}$	С	$1+t=-\frac{\ln P\cdot P_0}{r}$	D	$t=-rac{\lnrac{P}{P_0}}{r}$

5 Solve for the time given this model of a a continuously 6 declining bacteria population?

Solve for the time given this model of a continuous decline of a whale population?

$$377 = 500 \cdot e^{(-0.04 \cdot t)}$$

$$377 = 500 \cdot e^{(-0.04 \cdot t)} | 668 = 800 \cdot e^{(-0.02 \cdot t)}$$

Α	$4+t=-\frac{\ln P\cdot P_0}{r}$	В	$2+t=-rac{r}{\lnrac{P}{P_0}}$	А	$8+t=-rac{r}{\lnrac{P}{P_0}}$	В	$6+t=-\frac{\ln P\cdot P_0}{r}$
С	$t=-rac{\lnrac{P}{P_0}}{r}$	D	$0+t=-\frac{\ln P\cdot P_0}{r}$	С	$t=-rac{\lnrac{P}{P_0}}{r}$		

7 Solve for the time given this model of a continuous decline of a bird population?

Solve for the time given this model of a continuous decline of a whale population?

$$106 = 200 \cdot e^{(-0.09 \cdot t)}$$

$$466 = 800 \cdot e^{(-0.06 \cdot t)}$$

Α	$6+t=-\frac{lnP\cdot P_0}{r}$	В	$3+t=-\frac{\ln P\cdot P_0}{r}$	Α	$0+t=-\frac{\ln P\cdot P_0}{r}$	В	$2+t=-rac{\ln P\cdot P_0}{r}$
С	$0+t=-\frac{\ln P\cdot P_0}{r}$	D	$t=-rac{\lnrac{P}{P_0}}{r}$	С	$t=-rac{\lnrac{P}{P_0}}{r}$		