

mobius

Exponential Function Decay (Discrete) - Term to Meaning

mosassassa 16tm	to weaming		
What does this term represent in a model of balance of a charitable endowment (yearly disbursements)?	$P = P_0 \cdot (1-r)^{(t)} \ P_0 = ?$	What does this term represent in a model of decline of a whale population (yearly breeding cycle)?	$P = P_0 \cdot (1-r)^{(t)} \ r = ?$
$P_0={\sf rate}$	$^{\scriptscriptstyleB}$ $P_0=final\;cash$	$\overset{ extsf{A}}{r}=$ starting population	r=time
${}^{{}^{ ext{ iny C}}}\!P_0=starting\;cash$		r=rate	
What does this term represent in a model of decline of a bird population (yearly breeding cycle)?	$=P_0\cdot (1-r)^{(t)} \ P=?$	What does this term represent in a model of decline of a toxin concentration (hourly dialysis)?	$C = C_0 \cdot (1-r)^{(t)} \ t = ?$
$^{^{^{\!$	g population	$\overset{A}{t}=starting$ concentration	$t={\sf time}$
В		t=rate	
$P=final_{ }$	population		
What does this term represent in $C=C_0\cdot (1-r)^{(t)}$ a model of decline of a toxin		What does this term represent in a model of balance of a charitable endowment (weekly disbursements)?	
concentration (hourly dialysis)?	C = ?	$P=P_0 \cdot$	$(1-r)^{(t)}$
$\hat{\mathcal{C}}=$ starting concentration	$^{ extsf{B}}$ $C=time$	t =	=?
$\hat{C}=$ final concentration		A $t=final\;cash$	$B \qquad t = starting \; cash$
		$t={\sf time}$	$D \qquad t = rate$
7 What does this term represent in a model of decline of a toxin concentration (monthly dialysis)?	$C = C_0 \cdot (1-r)^{(t)} \ C_0 = ?$	What does this term represent in a model of decline of a toxin concentration (monthly dialysis)?	$C=C_0\cdot (1-r)^{(t)} \ r=?$
$\hat{m{\mathcal{C}}}_0 = final \; concentration$	$^{ extsf{B}}$ $C_0=time$	$\overset{A}{r}=final$ concentration	$r={\sf time}$
$\overline{\hat{C}_{\scriptscriptstyle 0}}=$ starting concentration		r=rate	