

mobius

Exponential Function Solution Equation Decay (Discrete, Mis-matched Time

 $C_0 = 124 \cdot (1 - 0.09)^{\frac{5}{7}}$

Units) Equation to Starting Value

Rearrange this equation to solve for the starting concentration given Rearrange this equation to so

this model of a decline of a toxin concentration (hourly dialysis)?

this model of a decline of a toxin concentration (daily dialysis)?

$$258 = C_0 \cdot (1 - 0.09)^{(7 \cdot 24)}$$

$$|258 = C_0 \cdot (1 - 0.09)^{(7 \cdot 24)}|124 = C_0 \cdot (1 - 0.09)^{(5 \cdot 7)}|$$

$$\stackrel{\mathsf{A}}{C_0} = rac{258}{(1+0.09)^{7\cdot 24}} \stackrel{\mathsf{B}}{C_0} = rac{258}{(1-0.09)^{7\cdot 24}}$$

3 Rearrange this equation to solve for the starting concentration given this model of a decline of a toxin concentration (daily dialysis)?

Rearrange this equation to solve for the starting cash given this model of a balance of a charitable endowment (daily

disbursements)?

$$|0=C_0\cdot(1-0.09)^{(rac{192}{24})}|$$
795 $=P_0\cdot(1-0.06)^{(2\cdot365)}$

$$795 = P_0 \cdot (1 - 0.06)^{(2 \cdot 365)}$$

$C_0 = \frac{0}{(1 - 0.09)^{\frac{192}{24}}}$	$C_0 = rac{0}{(1+0.09)^{rac{192}{24}}}$	$A P_0 = \frac{795}{(1+0.06)^{2\cdot 365}}$	B $P_0 = 795 \cdot (1 - 0.06)^{\frac{2}{365}}$
$C C_0 = 0 \cdot (1 - 0.09)^{192 \cdot 24}$		$ C P_0 = \frac{795}{(1 - 0.06)^{2 \cdot 365}} $	

5 Rearrange this equation to solve for the starting concentration given this model of a decline of a toxin concentration (daily dialysis)?

Rearrange this equation to solve for the starting concentration given this model of a decline of a toxin concentration (weekly dialysis)?

$$441 = C_0 \cdot (1 - 0.05)^{(9 \cdot 7)}$$

441
$$= C_0 \cdot (1$$
 $0.05)^{(9\cdot7)}$ 29 $= C_0 \cdot (1$ $0.09)^{(rac{35}{7})}$

Α	$C_0 = extsf{441} \cdot (extsf{1} - extsf{0.05})^{rac{9}{7}}$	В	$C_0 = rac{ extsf{441}}{(extsf{1} - 0.05)^{9\cdot 7}}$	А	$C_0 = rac{29}{\left(1 - 0.09 ight)^{rac{35}{7}}}$	В	$C_0 = 29 \cdot (1 - 0.09)^{35 \cdot 7}$
С	$C_0 = rac{ extsf{441}}{(1+0.05)^{9\cdot7}}$			С	$C_0 = rac{29}{(1+0.09)^{rac{35}{7}}}$		

7 Rearrange this equation to solve for the starting concentration given this model of a decline of a toxin concentration (hourly dialysis)?

Rearrange this equation to solve for the starting cash given this model of a balance of a charitable endowment (yearly disbursements)?

$$\left| 131 = C_0 \cdot (1 - 0.08)^{(5 \cdot 24)} \right|$$

$$|131 = C_0 \cdot (1 - 0.08)^{(5 \cdot 24)}|14 = P_0 \cdot (1 - 0.03)^{(rac{108}{12})}|$$

$$\stackrel{\mathsf{A}}{C}_0 = rac{131}{(1+0.08)^{5\cdot 24}} \stackrel{\mathsf{B}}{C}_0 = rac{131}{(1-0.08)^{5\cdot 24}} \stackrel{\mathsf{A}}{\overset{\mathsf{C}}{}}$$

A
$$P_0 = \frac{14}{(1-0.03)^{\frac{100}{12}}}$$
 B $P_0 = 14 \cdot (1-0.03)^{108 \cdot 12}$ C $P_0 = \frac{14}{(1+0.03)^{\frac{100}{12}}}$