

mobius

Exponential Function Solution Equation Decay (Discrete) - Equation to Time

Rearrange this equation to solve for the time given this model of a decline of a whale population (yearly breeding cycle)?

Rearrange this equation to solve for the time given this model of a decline of a whale population (yearly breeding cycle)?

$$248 = 300 \cdot (1 - 0.09)^{(t)}$$

 $|248 = 300 \cdot (1 - 0.09)^{(t)}|235 = 500 \cdot (1 - 0.09)^{(t)}$

А	$t=rac{lnrac{248}{300}}{ln(1-0.09)}$	B $t = \frac{\ln 248 \cdot 300}{\ln (1 - 0.09)}$	А	$t=rac{\lnrac{235}{500}}{\ln{(1-0.09)}}$	B $t = \frac{\ln 235 \cdot 500}{\ln (1 - 0.09)}$
С	$t=rac{lnrac{248}{300}}{ln(1+0.09)}$		С	$t = rac{ \ln rac{235}{500}}{ \ln \left(1 + 0.09 ight)}$	

3 Rearrange this equation to solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

Rearrange this equation to solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

$$620 = 700 \cdot (1 - 0.02)^{(t)}$$

 $|620 = 700 \cdot (1 - 0.02)^{(t)}|772 = 900 \cdot (1 - 0.03)^{(t)}$

Α	$t = \frac{\ln 620 \cdot 700}{\ln \left(1 - 0.02\right)}$	B $t = \frac{\ln \frac{620}{700}}{\ln (1 + 0.02)}$	Α	$t = rac{ \ln rac{772}{900}}{ \ln \left(1 + 0.03 ight)}$	B $t = \frac{\ln 772 \cdot 900}{\ln (1 - 0.03)}$
С	$t = rac{ \ln rac{620}{700}}{ \ln \left(1 - 0.02 ight)}$		С	$t = rac{ \ln rac{772}{900}}{ \ln \left(1 - 0.03 ight)}$	

5 Rearrange this equation to solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

Rearrange this equation to solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

$$244 = 300 \cdot (1 - 0.05)^{(t)}$$

 $244 = 300 \cdot (1 - 0.05)^{(t)} | 461 = 500 \cdot (1 - 0.02)^{(t)}$

A $t = \frac{\ln \frac{244}{300}}{\ln (1 - 0.05)}$	B $t = \frac{\ln 244 \cdot 300}{\ln (1 - 0.05)}$	Α	In 461	В	In 461
$t = rac{\lnrac{244}{300}}{\ln{(1+0.05)}}$		t =	500	t =	500
			$\ln (1-0.02)$		$\ln(1+0.02)$

7 Rearrange this equation to solve for the time given this model of a decline of a whale population (yearly breeding cycle)?

Rearrange this equation to solve for the time given this model of a balance of a charitable endowment (yearly disbursements)?

$$|470 = 500 \cdot (1 - 0.03)^{(t)}|346 = 500 \cdot (1 - 0.04)^{(t)}$$

$$|346 = 500 \cdot (1 - 0.04)^{(t)}$$

$$t=rac{\lnrac{470}{500}}{\ln{(1-0.03)}} igg|^{ ext{B}} t=rac{\lnrac{470}{500}}{\ln{(1+0.03)}}$$

A $t = \frac{\ln \frac{346}{500}}{\ln (1 - 0.04)}$	B $t = \frac{\ln \frac{346}{500}}{\ln (1 + 0.04)}$
$C t = \frac{\ln 346 \cdot 500}{\ln \left(1 - 0.04\right)}$	