

mobius

Exponential Function Solving - Decay (Discrete, Mis-matched Time Units)

Solve for the rate given this model of a balance of a charitable endowment (weekly disbursements)?

Solve for the rate given this model of a balance of a charitable endowment (monthly disbursements)?

$$|104 = 800 \cdot (1-r)^{(\frac{28}{7})}|619 = 700 \cdot (1-r)^{(3\cdot 12)}$$

$$619 = 700 \cdot (1-r)^{(3\cdot 12)}$$

Α	$r = -(rac{P}{P_0})^{rac{\ell}{2}} - 1$	$egin{aligned} B & r = -(rac{P}{P_0})^{rac{1}{\ell}} - 1 \end{aligned}$	Α	$r=-(rac{P}{P_0})^{rac{1}{l_2}}+1$	$ ho$ $r=-(rac{P}{P_0})^{rac{1}{p+2}}-1$
С	$r = -(rac{P}{P_0})^{rac{1}{i\cdot 7}} + 1$		С	$r = -(rac{P}{P_0})^{rac{t+12}{2}} - 1$	

2

3 Solve for the rate given this model of a balance of a charitable endowment (yearly disbursements)?

Solve for the rate given this model of a decline of a toxin concentration (hourly dialysis)?

$$|47 = 900 \cdot (1-r)^{(rac{72}{12})}|416 = 500 \cdot (1-r)^{(6\cdot 24)}$$

$$416 = 500 \cdot (1-r)^{(6\cdot 24)}$$

$$\stackrel{ extstyle e$$

5 Solve for the rate given this model of a decline of a toxin concentration (weekly dialysis)?

6 Solve for the rate given this model of a balance of a charitable endowment (yearly disbursements)?

$$\left| 22 = 300 \cdot (1-r)^{(rac{63}{7})} \right| 6 = 200 \cdot (1-r)^{(rac{84}{12})}$$

$$6 = 200 \cdot (1-r)^{(\frac{84}{12})}$$

Α	$r=-(rac{C}{C_0})^{rac{1}{kT}}+1$	$r=-(rac{C}{C_0})^{rac{1}{r}}-1$	Α	$r=-(rac{P}{P_0})^{rac{t_2}{2}}-1$	$r = -(\frac{P}{P_0})^{\frac{1}{12}} - 1$
С	$r = -(rac{C}{C_0})^{rac{f}{2}} - 1$		С	$r = -(rac{P}{P_0})^{rac{1}{t\cdot 12}} + 1$	

7 Solve for the rate given this model of a balance of a charitable endowment (monthly disbursements)?

Solve for the rate given this model of a balance of a charitable endowment (weekly disbursements)?

$$176 = 200 \cdot (1-r)^{(3\cdot 12)}$$

$$|176 = 200 \cdot (1-r)^{(3\cdot 12)}|111 = 300 \cdot (1-r)^{(rac{49}{7})}$$

Α	$r = -(rac{P}{P_0})^{rac{1}{p+2}} - 1$	$ ho$ $r=-(rac{P}{P_0})^{rac{t+2}{2}}-1$	$P = \frac{1}{L}$	B P 1
С	$r=-(rac{P}{P_0})^{rac{1}{12}}+1$		$ r=-(rac{1}{D})^{rac{t}{7}}-1$	$\left r=-\left(rac{1}{D} ight)^{rac{1}{t\cdot7}}+1 ight $
			P_0	P_0