

mobius

Exponential Function Solving - Decay (Discrete) Equation to Rate

Solve for the rate given this model of a decline of a toxin concentration (hourly dialysis)?

Solve for the rate given this model of a decline of a whale population (yearly breeding cycle)?

$$|323 = 500 \cdot (1-r)^{(6)}|331 = 400 \cdot (1-r)^{(2)}$$

$$331 = 400 \cdot (1-r)^{(2)}$$

Α	$r=-(\frac{C}{C_0})^{\frac{1}{\ell}}-1$	В	$9+r=-(rac{C}{C_0})^{rac{t}{2}}-1$	Α	$r=-(\frac{P}{P_0})^{\frac{1}{i}}-1$	В	$5+r=-(rac{P}{P_0})^{rac{1}{r}}+1$
С	$6+r=-(rac{C}{C_0})^{rac{t}{2}}-1$	D	$7+r=-(rac{C}{C_0})^{rac{1}{t}}+1$	С	$4+r=-(rac{P}{P_0})^{rac{1}{i}}+1$	D	$9+r=-(rac{P}{P_0})^{rac{1}{i}}+1$

3 Solve for the rate given this model of a balance of a charitable endowment (monthly disbursements)?

Solve for the rate given this model of a decline of a toxin concentration (weekly dialysis)?

$$518 = 800 \cdot (1-r)^{(7)}$$

$$518 = 800 \cdot (1-r)^{(7)} 376 = 500 \cdot (1-r)^{(3)}$$

Α	$0+r=-(rac{P}{P_0})^{rac{t}{2}}-1$	В	$r=-(rac{P}{P_0})^{rac{1}{t}}-1$	Α	$1+r=-(rac{C}{C_0})^{rac{t}{2}}-1$	В	$2+r=-(rac{C}{C_0})^{rac{t}{2}}-1$
С	$6+r=-(rac{P}{P_0})^{rac{1}{i}}+1$	D	$5+r=-(rac{P}{P_0})^{rac{1}{t}}+1$	С	$6+r=-(rac{C}{C_0})^{rac{t}{2}}-1$	D	$r=-(rac{C}{C_0})^{rac{1}{t}}-1$

5 Solve for the rate given this model of a decline of a bird population (yearly breeding cycle)?

Solve for the rate given this model of a decline of a toxin concentration (weekly dialysis)?

$$|293 = 400 \cdot (1-r)^{(5)}|255 = 300 \cdot (1-r)^{(8)}$$

$$255 = 300 \cdot (1-r)^{(8)}$$

Α	$7+r=-(rac{P}{P_0})^{rac{\epsilon}{2}}-1$	В	$r = -(rac{P}{P_0})^{rac{1}{i}} - 1$	Α	$3+r=-(rac{C}{C_0})^{rac{1}{t}}+1$	В	$r=-(rac{C}{C_0})^{rac{1}{ ilde{t}}}-1$
С	$1+r=-(rac{P}{P_0})^{rac{t}{2}}-1$	D	$3+r=-(rac{P}{P_0})^{rac{1}{i}}+1$	С	$2+r=-(rac{C}{C_0})^{rac{1}{t}}+1$		

7 Solve for the rate given this model of a balance of a charitable endowment (yearly disbursements)?

Solve for the rate given this model of a decline of a whale population (yearly breeding cycle)?

$$|424 = 700 \cdot (1-r)^{(6)}|398 = 600 \cdot (1-r)^{(8)}$$

$$398 = 600 \cdot (1-r)^{(8)}$$

Α	$2+r=-(rac{P}{P_0})^{rac{t}{2}}-1$	В	$8+r=-(rac{P}{P_0})^{rac{1}{t}}+1$	Α	$8+r=-(rac{P}{P_0})^{rac{1}{t}}+1$	В	$2+r=-(rac{P}{P_0})^{rac{1}{i}}+1$
С	$r=-(\frac{P}{P_0})^{\frac{1}{t}}-1$	D	$6+r=-(rac{P}{P_0})^{rac{1}{t}}+1$	С	$6+r=-(rac{P}{P_0})^{rac{1}{t}}+1$	D	$r= -(\frac{P}{P_0})^{\frac{1}{t}}-1$