

mobius

Exponential Function Solving - Decay (Discrete) Equation to Starting Value

Solve for the starting population given this model of a decline of a whale population (yearly breeding cycle)?

Solve for the starting population given this model of a decline of a whale population (yearly breeding cycle)?

$$234 = P_0 \cdot (1 - 0.06)^{(4)}$$

$$|234 = P_0 \cdot (1 - 0.06)^{(4)}|156 = P_0 \cdot (1 - 0.03)^{(8)}$$

Α	$3+P_0=P\cdot (1-r)^t$	В	$P_0 = \frac{P}{(1-r)^t}$	Α	$3+P_0=\frac{P}{(1+r)^t}$	В	$P_0 = \frac{P}{(1-r)^t}$
С	$3+P_0=\frac{P}{(1+r)^t}$	D	$8+P_0=P\cdot (1-r)^t$	С	$1+P_0=P\cdot (1-r)^t$	D	$9+P_0=P\cdot (1-r)^t$

3 Solve for the starting cash given this model of a balance of a charitable endowment (yearly disbursements)?

Solve for the starting cash given this model of a balance of a charitable endowment (yearly disbursements)?

$$141 = P_0 \cdot (1 - 0.09)^{(1)}$$

$$|141 = P_0 \cdot (1 - 0.09)^{(8)}|150 = P_0 \cdot (1 - 0.04)^{(7)}$$

-1								
	Α	$8+P_0=P\cdot (1-r)^t$	В	$6+P_0=\frac{P}{(1+r)^t}$	Α	$P_0 = \frac{P}{(1-r)^t}$	В	$2+P_0=P\cdot (1-r)^t$
	С	$P_0 = \frac{P}{(1-r)^t}$	D	$4+P_0=\frac{P}{(1+r)^t}$	С	$6+P_0=\frac{P}{(1+r)^t}$	D	$2+P_0=\frac{P}{(1+r)^t}$
ľ								

5 Solve for the starting concentration given this model of a decline of a toxin concentration (daily dialysis)?

Solve for the starting cash given this model of a balance of a charitable endowment (yearly disbursements)?

$$| 553 = C_0 \cdot (1 - 0.02)^{(4)} | 707 = P_0 \cdot (1 - 0.04)^{(3)}$$

$$707 = P_0 \cdot (1 - 0.04)^{(3)}$$

Α	$C_0 = \frac{C}{(1-r)^t}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$A 7 + P_0 = P \cdot (1 - r)^t$	$B 1 + P_0 = P \cdot (1 - r)^t$
С	$2+C_0=\frac{C}{(1+r)^t}$	$egin{array}{ccc} D & 6 + C_0 = C \cdot (1 - r)^t \end{array}$	$C \qquad \qquad P_0 = rac{P}{(1-r)^t}$	$D 9 + P_0 = P \cdot (1 - r)^t$

7 Solve for the starting population given this model of a decline of a whale population (yearly breeding cycle)?

Solve for the starting cash given this model of a balance of a charitable endowment (daily disbursements)?

$$\left| 121 = P_0 \cdot (1 - 0.08)^{(6)} \right|$$
293 $= P_0 \cdot (1 - 0.06)^{(5)}$

$$293 = P_0 \cdot (1 - 0.06)^{(3)}$$