

mobius

Exponential Function Solving - Decay (Discrete, Mis-matched Time Units) -

Solve for the time given this model of a palance of a charitable endowment (weekly disbursements)?

Solve for the time given this model of a decline of a toxin concentration (hourly dialysis)?

$$|\mathbf{5} = 300 \cdot (1 - 0.08)^{(\frac{t}{7})}|253 = 300 \cdot (1 - 0.08)^{(t \cdot 24)}$$

$$253 = 300 \cdot (1 - 0.08)^{(t \cdot 24)}$$

Α	$t=rac{1}{7}\cdotrac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	В	$t = 7 \cdot rac{ ln P \cdot P_0}{ ln (1-r)}$	Α	$t = 24 \cdot rac{\ln rac{C}{C_0}}{\ln \left(1-r ight)}$	$b t = \frac{1}{24} \cdot \frac{\ln \frac{C}{C_0}}{\ln (1-r)}$
С	$t=7\cdotrac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	D	$t = rac{1}{7} \cdot rac{\ln rac{P}{P_0}}{\ln \left(1 - r ight)}$	С	$t = rac{1}{24} \cdot rac{\ln C \cdot C_0}{\ln \left(1-r ight)}$	

2

3 Solve for the time given this model of a balance of a charitable endowment (yearly disbursements)?

Solve for the time given this model of a decline of a toxin concentration (weekly dialysis)?

$$20 = 600 \cdot (1 - 0.09)^{(\frac{t}{12})}$$

$$20 = 600 \cdot (1 - 0.09)^{(\frac{t}{12})} 282 = 500 \cdot (1 - 0.04)^{(\frac{t}{7})}$$

Α	$t = rac{1}{12} \cdot rac{\ln rac{P}{P_0}}{\ln \left(1 + r ight)}$	$t=12\cdotrac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	Α	$t=rac{1}{7}\cdotrac{\lnrac{C}{C_0}}{\ln\left(1+r ight)}$	В	$t=7\cdotrac{\lnrac{C}{C_0}}{\ln\left(1-r ight)}$
С	$t = rac{1}{12} \cdot rac{ \ln rac{P}{P_0}}{\ln \left(1 - r ight)}$		С	$t = rac{1}{7} \cdot rac{ \ln rac{C}{C_0}}{\ln \left(1 - r ight)}$	D	$t = 7 \cdot rac{\ln C \cdot C_0}{\ln \left(1 - r ight)}$

5 Solve for the time given this model of a decline of a toxin concentration (weekly dialysis)?

Solve for the time given this model of a balance of a charitable endowment (weekly disbursements)?

$$|334 = 900 \cdot (1 - 0.02)^{(\frac{t}{7})}|294 = 700 \cdot (1 - 0.06)^{(\frac{t}{7})}|$$

$$294 = 700 \cdot (1 - 0.06)^{(\frac{t}{7})}$$

Α	$t = 7 \cdot rac{\ln rac{C}{C_0}}{\ln \left(1 - r ight)}$	$t = 7 \cdot \frac{\ln C \cdot C_0}{\ln (1-r)}$	Α	$t=7\cdotrac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	$b t = 7 \cdot \frac{\ln \frac{P}{P_0}}{\ln (1 - r)}$
С	$t = rac{1}{7} \cdot rac{\ln rac{C}{C_0}}{\ln \left(1 + r ight)}$		С	$t = rac{1}{7} \cdot rac{\ln rac{P}{P_0}}{\ln \left(1 + r ight)}$	

7 Solve for the time given this model of a balance of a charitable endowment (daily disbursements)?

Solve for the time given this model of a decline of a toxin concentration (daily dialysis)?

$$456 = 600 \cdot (1 - 0.03)^{(t \cdot 7)}$$

$$|456 = 600 \cdot (1 - 0.03)^{(t \cdot 7)}|0 = 500 \cdot (1 - 0.09)^{(\frac{t}{24})}$$

Α	$t=7\cdotrac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	B $t = 7 \cdot \frac{\ln \frac{P}{P_0}}{\ln (1 - r)}$	А	$t=24\cdotrac{\lnrac{C}{C_0}}{\ln\left(1-r ight)}$	$B \qquad \qquad t = \frac{1}{24} \cdot \frac{\ln \frac{C}{C_0}}{\ln (1-r)}$
С	$t = rac{1}{7} \cdot rac{\ln rac{P}{P_0}}{\ln \left(1-r ight)}$		С	$t = rac{1}{24} \cdot rac{\lnrac{C}{C_0}}{\ln\left(1+r ight)}$	