

mobius

Exponential Function Solving - Decay (Discrete) - Equation to Time

Solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

Solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

 $752 = 800 \cdot (1 - 0.02)^{(t)} | 456 = 600 \cdot (1 - 0.03)^{(t)}$

Α	$5+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	Α	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	В	$5+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$
С	$2+t=\frac{\ln P\cdot P_0}{\ln \left(1-r\right)}$		С	$5+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	D	$2+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$

2

3 Solve for the time given this model of a decline of a whale population (yearly breeding cycle)?

Solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

$$|673 = 900 \cdot (1 - 0.07)^{(t)}$$

 $673 = 900 \cdot (1 - 0.07)^{(t)} 652 = 800 \cdot (1 - 0.04)^{(t)}$

Α	$1+t=rac{{ extsf{ln}P\cdot P_0}}{{ extsf{ln}(1-r)}}$	В	$0+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	Α	$4+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	В	$6+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$
С	$3+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	D	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	С	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	D	$6+t=\frac{lnP\cdot P_0}{ln(1\!-\!r)}$

5 Solve for the time given this model of a balance of a charitable endowment (monthly disbursements)?

Solve for the time given this model of a decline of a toxin concentration (monthly dialysis)?

$$552 = 600 \cdot (1 - 0.04)^{(t)}$$

 $|552 = 600 \cdot (1 - 0.04)^{(t)}|515 = 600 \cdot (1 - 0.03)^{(t)}$

Α	$6+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	В	$8+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	Α	$1+t=rac{\ln C\cdot C_0}{\ln \left(1-r ight)}$	В	$2+t=rac{\lnrac{C}{C_0}}{\ln\left(1+r ight)}$
С	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	D	$4+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	С	$5+t=rac{\lnrac{C}{C_0}}{\ln\left(1+r ight)}$	D	$t = rac{\ln rac{C}{C_0}}{\ln \left(1 - r ight)}$

7 Solve for the time given this model of a decline of a toxin concentration (hourly dialysis)?

Solve for the time given this model of a decline of a bird population (yearly breeding cycle)?

$$|163 = 200 \cdot (1 - 0.04)^{(t)}|579 = 700 \cdot (1 - 0.09)^{(t)}$$

Α	$7+t=rac{\lnrac{C}{C_0}}{\ln\left(1+r ight)}$	В	$9+t=rac{\ln C\cdot C_0}{\ln \left(1-r ight)}$	Α	$t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	В	$9+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$
С	$t = rac{\ln rac{C}{C_0}}{\ln \left(1 - r ight)}$	D	$8+t=rac{\ln C\cdot C_0}{\ln \left(1-r ight)}$	С	$7+t=rac{\ln P\cdot P_0}{\ln \left(1-r ight)}$	D	$4+t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$