

mobius

Exponential Function Solving - Decay (Discrete) Equation to Value at Time

- Solve for the final cash given this model of a balance of a charitable endowment (weekly disbursements)?
- Solve for the final concentration given this model of a decline of a toxin concentration (daily dialysis)?

$$P = 300 \cdot (1 - 0.04)^{(5)} C = 300 \cdot (1 - 0.07)^{(9)}$$

$$C = 300 \cdot (1 - 0.07)^{(9)}$$

Α	$P=P_0\cdot (1-r)^{(t)}$	В	$1 + P = rac{P_0}{(1-r)^{(t)}}$	Α	$3+C=C_0\cdot (1+r)^{(t)}$	В	$C=C_0\cdot (1-r)^{(t)}$
С	$0+P=P_0\cdot (1+r)^{(t)}$	D	$6+P=rac{P_0}{(1-r)^{(t)}}$	С	$4+C=C_0\cdot(1+r)^{(t)}$	D	$6+C=rac{C_0}{({f 1}-r)^{(t)}}$

- 3 Solve for the final population given this model of a decline of a whale population (yearly breeding cycle)?
- 4 Solve for the final concentration given this model of a decline of a toxin concentration (hourly dialysis)?

$$P = 800 \cdot (1 - 0.04)^{(5)}$$

$$P = 800 \cdot (1 - 0.04)^{(5)} | C = 800 \cdot (1 - 0.05)^{(9)}$$

- 5 Solve for the final population given this model of a decline of a whale population (yearly breeding cycle)?
- Solve for the final concentration given this model of a decline of a toxin concentration (daily dialysis)?

$$P = 400 \cdot (1-0.09)^{(2)} C = 800 \cdot (1-0.02)^{(9)}$$

$$C = 800 \cdot (1 - 0.02)^{(9)}$$

Α	$P=P_0\cdot (1-r)^{(t)}$	$oxed{B} 6 + P = P_0 \cdot (1 + r)^{(t)}$		В	$C=C_0\cdot (1-r)^{(t)}$
С	$2+P=P_0\cdot (1+r)^{(t)}$	D $3+P=rac{P_0}{(1-r)^{(t)}}$	$egin{array}{ccc} C & 0 + C = C_0 \cdot (1 + r)^{(t)} \end{array}$	D	$1+C=\frac{C_0}{(1-r)^{(t)}}$

- 7 Solve for the final concentration given this model of a decline of a toxin concentration (hourly dialysis)?
- Solve for the final concentration given this model of a decline of a toxin concentration (hourly dialysis)?

$$C = 700 \cdot (1 - 0.02)^{(8)} C = 200 \cdot (1 - 0.08)^{(5)}$$

$$C = 200 \cdot (1 - 0.08)^{(5)}$$

Α	$7+C=rac{C_0}{(1-r)^{(t)}}$	$egin{array}{cccc} B & & C = C_0 \cdot (1-r)^{(t)} \end{array}$	Α	$1 + C = \frac{C_0}{(1-r)^{(t)}}$	$oxed{B} \qquad C = C_0 \cdot (1-r)^{(t)}$
С	$4+C=C_0\cdot(1+r)^{(t)}$	$\begin{array}{ c c c } D & 1 + C = C_0 \cdot (1 + r)^{(t)} \end{array}$	С	$2+C=rac{C_0}{({ extbf{1}}-r)^{(t)}}$	