

mobius

Exponential Function Decay (Discrete) - Meaning to Term

2

In this model of decline of a whale population (yearly breeding cycle), which term represents the starting population?

$$P = P_0 \cdot (1-r)^{(t)}$$
 starting population =?

In this model of balance of a charitable endowment (yearly disbursements), which term represents the final cash?

$$P = P_0 \cdot (1-r)^{(t)}$$
 final cash $=$?

r

P

 P_0

t

P

1

7

In this model of decline of a bird population (yearly breeding cycle), which term represents the rate?

$$P = P_0 \cdot (1-r)^{(t)}$$
 rate $=$?

In this model of decline of a bird population (yearly breeding cycle), which term represents the time?

$$P = P_0 \cdot (1-r)^{(t)} \ ext{time} = ?$$

r

P

 $\ \ P_0$

t

t

 P_0

 \boldsymbol{F}

In this model of decline of a whale population (yearly breeding cycle), which term represents the final population?

$$P = P_0 \cdot (1-r)^{(t)}$$
 final population =?

In this model of decline of a toxin concentration (monthly dialysis), which term represents the starting concentration?

$$C = C_0 \cdot (1-r)^{(t)}$$
 starting concentration $=$?

^Α γ

F

6

C

r

 C_0

t

7 In this model of balance of a charitable endowment (weekly disbursements), which term represents the starting cash?

$$P = P_0 \cdot (1-r)^{(t)}$$
 starting cash =?

In this model of decline of a toxin concentration (hourly dialysis), which term represents the time?

$$C = C_0 \cdot (1-r)^{(t)} \ ext{time} = ?$$

t

 P_0

γ

P

C