

mobius

Exponential Function Solution Equation - Growth (Continuous) Equation to Starting

Rearrange this equation USIve for the starting views given this model of a continuous exponential growth of social media post views?

ren this a post

Rearrange this equation to solve for the starting debt given this model of a growth of debt on a credit card with continuous compounding?

1, 438
$$= V_0 \cdot e^{(0.08\cdot 9)}$$

$$854 = D_0 \cdot e^{(0.05 \cdot 4)}$$

Α	$V_0 = rac{ extbf{1438}}{e^{(0.08 \cdot 9)}}$	$V_0 = rac{e^{(0.08\cdot 9)}}{1438}$	Α	$D_0 = rac{854}{e^{(rac{0.05}{4})}}$	B $D_0 = \frac{854}{e^{(0.05\cdot4)}}$
С	$V_0=rac{1438}{e^{(rac{arrho.08}{9})}}$		С	$D_0 = \frac{e^{(0.05\cdot 4)}}{854}$	

Rearrange this equation to solve for the starting downloads given this model of a continuously compounding growth of app downloads?

Rearrange this equation to solve for the starting downloads given this model of a continuously compounding growth of app downloads?

1, 232
$$=A_0 \cdot e^{(0.09\cdot 8)}$$

$$530 = A_0 \cdot e^{(0.03 \cdot 2)}$$

$A_0 = rac{1232}{e^{(0.09\cdot 8)}}$	$A_0 = rac{e^{(0.09\cdot8)}}{1232}$	Α	$A_0=rac{{f 530}}{e^{(rac{0.03}{2})}}$	B $A_0 = \frac{e^{(0.03\cdot 2)}}{530}$
$oxed{C} \qquad \qquad A_0 = rac{1232}{e^{\left(rac{0.09}{8} ight)}}$		С	$A_0=rac{{\sf 530}}{e^{(0.03\cdot 2)}}$	

Rearrange this equation to solve for the starting population given this model of a continuous growth of a rabbit population?

Rearrange this equation to solve for the starting debt given this model of a growth of debt on a credit card with continuous compounding?

$$676 = P_0 \cdot e^{(0.04 \cdot 3)}$$

$$442 = D_0 \cdot e^{(0.02 \cdot 5)}$$

Α	$P_0=rac{e^{(0.04\cdot3)}}{676}$	$P_0 = rac{676}{e^{(0.04\cdot3)}}$	Α	$D_0 = \frac{442}{e^{(0.02\cdot 5)}}$	B $D_0 = \frac{e^{(0.02\cdot 5)}}{442}$
С	$P_0 = rac{676}{e^{(rac{0.04}{3})}}$		С	$D_0 = rac{442}{e^{(rac{0.02}{5})}}$	

Rearrange this equation to solve for the starting downloads given this model of a continuously compounding growth of app downloads? Rearrange this equation to solve for the starting debt given this model of a growth of debt on a credit card with continuous compounding?

$$627 = A_0 \cdot e^{(0.09 \cdot 5)}$$

$$352 = D_0 \cdot e^{(0.08\cdot 2)}$$

Α	$A_0=rac{ extsf{627}}{e^{(0.09\cdot 5)}}$	$A_0 = rac{e^{(0.09\cdot 5)}}{627}$	А	$D_0 = rac{352}{e^{(0.08\cdot 2)}}$	B $D_0 = \frac{e^{(0.08 \cdot 2)}}{352}$
С	$A_0 = \frac{627}{e^{(\frac{0.09}{5})}}$		С	$D_0 = \frac{352}{e^{(\frac{0.03}{2})}}$	