

mobius

Exponential Function Solving - Growth (Continuous) **Equation to Starting Value**

Solve for the starting downloads given this model of a continuously compounding growth of app downloads?

Solve for the starting price given this model of a continuously compounding growth of a share price?

1, 045
$$=A_0\cdot e^{(0.03\cdot 5)}$$

$$901 = S_0 \cdot e^{(0.02 \cdot 6)}$$

Α	$0+A_0=\frac{A}{e^{(\frac{r}{t})}}$	В	$4+A_0=\frac{e^{(r\cdot t)}}{A}$	Α	$8+S_0=\frac{S}{e^{(\frac{r}{t})}}$	В	$S_0 = rac{S}{e^{(r \cdot t)}}$
С	$1+A_0=\frac{e^{(r\cdot t)}}{A}$	D	$A_0 = rac{A}{e^{(r \cdot t)}}$	С	$6+S_0=rac{S}{e^{(rac{r}{ec t})}}$	D	$0+S_0=\frac{S}{e^{(\frac{r}{t})}}$

3 Solve for the starting cash given this model of a continuously compounding growth of money in a savings account?

Solve for the starting population given this model of a continuous growth of a rabbit population?

$$760 = P_0 \cdot e^{(0.07 \cdot 6)}$$

$$345 = P_0 \cdot e^{(0.02 \cdot 7)}$$

Α	$4+P_0=\frac{P}{e^{(\frac{r}{t})}}$	В	$6+P_0=rac{P}{e^{(rac{r}{t})}}$	Α	$0+P_0=rac{P}{e^{(rac{r}{t})}}$	В	$5+P_0=rac{e^{(r\cdot t)}}{P}$
С	$P_0=rac{P}{e^{(r\cdot t)}}$			С	$2+P_0=rac{e^{(r\cdot t)}}{P}$	D	$P_0=rac{P}{e^{(r\cdot t)}}$

Solve for the starting debt given this model of a growth of debt on a credit card with continuous compounding? Solve for the starting population given this model of a continuous growth of an insect population?

635 =
$$D_0 \cdot e^{(0.06\cdot 4)}$$

1, 214
$$= P_0 \cdot e^{(0.05 \cdot 6)}$$

Α	$0 + D_{0} = \frac{e^{(r \cdot t)}}{D}$	В	$7+D_0=\frac{D}{e^{(\frac{r}{t})}}$	Α	$5+P_0=\frac{P}{e^{(\frac{r}{t})}}$	В	$P_0 = \frac{P}{e^{(r \cdot t)}}$
С	$D_0 = \frac{D}{e^{(r \cdot t)}}$	D	$3+D_0=\frac{D}{e^{(\frac{r}{t})}}$	С	$3+P_0=\frac{e^{(r\cdot t)}}{P}$	D	9 + $P_0 = rac{e^{(r \cdot t)}}{P}$

7 Solve for the starting views given this model of a continuous exponential growth of social media post views?

Solve for the starting downloads given this model of a continuously compounding growth of app downloads?

$$396 = V_0 \cdot e^{(0.07 \cdot 4)}$$

700 =	A_0	$\cdot e$	(0.07.8)
--------------	-------	-----------	----------

Α	$1+V_0=\frac{V}{e^{(\frac{v}{t})}}$	В	$1+V_0=\frac{e^{(r\cdot t)}}{V}$	Α	$3+A_0=\frac{e^{(r\cdot t)}}{A}$	В	$4 + A_0 = \frac{e^{(r \cdot t)}}{A}$
С	$V_0=rac{V}{e^{(r\cdot t)}}$	D	$2+V_0=\frac{V}{e^{(\frac{r}{t})}}$	С	$A_0 = \frac{A}{e^{(r \cdot t)}}$	D	$7+A_0=\frac{e^{(r\cdot t)}}{A}$