

mobius

Exponential Function Solving - Growth (Continuous) - Equation to Time

Solve for the time given this model of a continuous growth of a bacteria population?

2 Solve for the time given this model of a continuously compounding growth of money in a savings account?

$$1.214 = 900 \cdot e^{(0.05 \cdot t)}$$

1, 214 = 900
$$\cdot e^{(0.05 \cdot t)}$$
 1, 372 = 800 $\cdot e^{(0.06 \cdot t)}$

Α	$1+t=+rac{r}{\lnrac{P}{P_0}}$	В	$1+t=+\frac{\ln P\cdot P_0}{r}$	Α	$4+t=+\frac{\ln P\cdot P_0}{r}$	В	$t=+rac{\lnrac{P}{P_0}}{r}$
С	$t=+rac{\lnrac{P}{P_0}}{r}$	D	$6+t=+\frac{lnP\cdot P_0}{r}$	С	$0+t=+rac{r}{\lnrac{P}{P_0}}$	D	$9+t=+\frac{\ln P\cdot P_0}{r}$

3 Solve for the time given this model of a continuous exponential growth of social media post views?

Solve for the time given this model of a growth of debt on a credit card with continuous compounding?

$$940 = 600 \cdot e^{(0.05 \cdot t)}$$

$$514 = 300 \cdot e^{(0.06 \cdot t)}$$

Α	$t=+rac{\lnrac{V}{V_0}}{r}$	В	$3+t=+\frac{\ln V\cdot V_0}{r}$	Α	9 + $t=+rac{r}{\lnrac{D}{\overline{D_0}}}$	$t = +rac{\lnrac{D}{\overline{D_0}}}{r}$
С	$2+t=+rac{r}{\lnrac{V}{V_0}}$	D	$0+t=+rac{r}{\lnrac{V}{V_0}}$	С	$4+t=+rac{r}{\lnrac{D}{D_0}}$	

5 Solve for the time given this model of a continuous growth of a rabbit population?

Solve for the time given this model of a continuously compounding growth of app downloads?

$$688 = 500 \cdot e^{(0.04 \cdot t)}$$

$$866 = 800 \cdot e^{(0.04 \cdot t)}$$

Α	$5+t=+rac{r}{\lnrac{P}{P_0}}$	В	$t=+rac{{\sf ln}rac{P}{P_0}}{r}$	Α	$t=+rac{\lnrac{A}{A_0}}{r}$	В	$8+t=+rac{r}{\lnrac{A}{A_0}}$
С	$6+t=+\frac{\ln P\cdot P_0}{r}$	D	$9+t=+\frac{\ln P\cdot P_0}{r}$	С	$4+t=+\frac{\ln A\cdot A_0}{r}$		

7 Solve for the time given this model of a continuous exponential growth of social media post views?

Solve for the time given this model of a growth of debt on a credit card with continuous compounding?

$$514 = 300 \cdot e^{(0.09 \cdot t)}$$

1, 214
$$=$$
 900 $\cdot e^{(0.06 \cdot t)}$

Α	$2+t=+rac{r}{\lnrac{V}{V_0}}$	В	$8+t=+\frac{\ln V\cdot V_0}{r}$	Α	$9+t=+\frac{\ln D\cdot D_0}{r}$	В	$t=+rac{\lnrac{D}{D_0}}{r}$
С	$t=+rac{{\sf ln}rac{V}{V_0}}{r}$	D	$7+t=+rac{r}{\lnrac{V}{V_0}}$	С	$7+t=+rac{r}{\lnrac{D}{D_0}}$	D	$5+t=+rac{r}{\lnrac{D}{D_0}}$