

mobius

Exponential Function Solving - Growth (Continuous) **Equation to Value at Time**

Solve for the final population given this model of a continuous growth of a bacteria population?	$P = 700 \cdot e^{(0.06 \cdot 3)}$	Solve for the final population given this model of a continuous growth of a rabbit population?	$P=$ 200 \cdot $e^{(0.05\cdot8)}$
$^{A} P = P_0 \cdot e^{(r \cdot t)}$	$^{ extsf{B}}$ 7 + $P=P_0-e^{(r\cdot t)}$	$^{A}7+P=P_{0}-e^{(r\cdot t)}$	$^{ extsf{B}}$ $P=P_0\cdot e^{(r\cdot t)}$
$^{ extsf{C}}$ 5 + $P=P_0\cdot e^{(rac{r}{t})}$		$^{ extsf{C}}$ 3 + $P=P_0\cdot e^{(rac{r}{t})}$	$^{ extsf{D}}$ 4 + $P=P_0$ $-e^{(r\cdot t)}$
Solve for the final population given this model of a continuous growth of an insect population?	$P = 900 \cdot e^{(0.06 \cdot 2)}$	Solve for the final views given this model of a continuous exponential growth of social media post views?	$V = 200 \cdot e^{(0.08 \cdot 6)}$
$^{A}6+P=P_{0}-e^{(r\cdot t)}$	B $P=P_{0}\cdot e^{(r\cdot t)}$	$^{A}6 + V = V_0 \cdot e^{(rac{r}{t})}$	B 4 $+$ $V = V_0 \cdot e^{(rac{r}{t})}$
$^{\mathtt{C}}\mathtt{5}+P=P_{0}-e^{(r\cdot t)}$	$^{ extsf{D}}$ 4 $+$ P $=$ $P_0\cdot e^{(rac{r}{t})}$	$^{ extsf{c}}$ 0 + $V=V_0$ $-e^{(r\cdot t)}$	$^{ extsf{D}}$ $V=V_0\cdot e^{(r\cdot t)}$
Solve for the final population given this model of a continuous growth of an insect population?	$P = 900 \cdot e^{(0.05 \cdot 3)}$	Solve for the final population given this model of a continuous growth of a bacteria population?	$P = 700 \cdot e^{(0.06 \cdot 5)}$
$^{A} P = P_0 \cdot e^{(r \cdot t)}$	$^{ extsf{B}}$ 6 + $P=P_0$ $-e^{(r\cdot t)}$	$^{A}7+P=P_0\cdot e^{(rac{r}{t})}$	$^{ extsf{B}}$ $P=P_0\cdot e^{(r\cdot t)}$
$^{ extsf{C}}$ 0 $+$ P $=$ $P_0\cdot e^{(rac{r}{t})}$	$ ho$ 7 + $P=P_0\cdot e^{(rac{r}{t})}$	$^{ extsf{c}}$ 0 $+$ P $=$ $P_0\cdot e^{(rac{r}{t})}$	$^{ extsf{D}}$ 8 + $P=P_0-e^{(r\cdot t)}$
7 Solve for the final debt given this model of a growth of debt on a credit card with continuous compounding?	$D=$ 300 \cdot $e^{(0.04\cdot 9)}$	Solve for the final debt given this model of a growth of debt on a credit card with continuous compounding?	$D=$ 900 \cdot $e^{(0.08\cdot2)}$
A 8 + $D=D_0\cdot e^{(rac{r}{t})}$	$^{ extstyle B}\!$	$^{A} \;\; D = D_0 \cdot e^{(r \cdot t)}$	$^{ t B}\!\!\! 3+D=D_0-e^{(r\cdot t)}$
	1		
$^{ extsf{C}} \ \ D = D_0 \cdot e^{(r \cdot t)}$		$^{\mathtt{c}}$ 9 + $D = D_{\mathtt{0}} \cdot e^{(rac{r}{t})}$	$7 + D = D_0 - e^{(r \cdot t)}$
$D = D_0 \cdot e^{(r \cdot t)}$		$^{ extsf{C}}$ 9 + $D=D_0\cdot e^{(rac{r}{t})}$	$7 + D = D_0 - e^{(r \cdot t)}$