

5

7

## mobius

## **Exponential Function Solution Equation Growth (Discrete, Mis-matched Time**



Units) Equation to Starting Value

Rearrange this equation to solve for the starting debt given this model of a growth in credit card debt with yearly interest?

model of a growth in credit card debt with quarterly interest?

$$\left| 12,517 = D_0 \cdot (1+0.09)^{(rac{48}{12})} 
ight| 449 = D_0 \cdot (1+0.06)^{(2\cdot 4)}$$

449 
$$= D_0 \cdot (1 + 0.06)^{(2\cdot 4)}$$

| $D_0 = \frac{12517}{(1+0.09)^{\frac{48}{12}}}$       | B $D_0 = \frac{12517}{(1-0.09)^{\frac{48}{12}}}$ |
|------------------------------------------------------|--------------------------------------------------|
| ${}^{C}\!D_0 = 12517 \cdot (1 + 0.09)^{48 \cdot 12}$ |                                                  |
|                                                      |                                                  |

$$D_0 = rac{449}{(1+0.06)^{2\cdot 4}} D_0 = rac{449}{(1-0.06)^{2\cdot 4}}$$

3 Rearrange this equation to solve for the starting debt given this model of a growth in credit card debt with quarterly interest?

Rearrange this equation to solve for the starting debt given this model of a growth in credit card debt with quarterly interest?

$$|1$$
, 012  $= D_0 \cdot (1 + 0.04)^{(3\cdot4)}$ 

1, 012 
$$= D_0 \cdot (1 + 0.04)^{(3\cdot 4)} 844 = D_0 \cdot (1 + 0.05)^{(7\cdot 4)}$$

| Α | $D_0 = \frac{1012}{(1 - 0.04)^{3 \cdot 4}}$ | В | $D_0 = \frac{1012}{(1+0.04)^{3\cdot 4}}$ | Α | $D_0 = 844 \cdot (1 + 0.05)^{rac{7}{4}}$ | В | $D_0 = \frac{844}{(1+0.05)^{7\cdot 4}}$ |
|---|---------------------------------------------|---|------------------------------------------|---|-------------------------------------------|---|-----------------------------------------|
| C | $D_0 = 1012 \cdot (1 + 0.04)^{rac{3}{4}}$  |   |                                          | С | $D_0 = \frac{844}{(1-0.05)^{7\cdot 4}}$   |   |                                         |
|   |                                             |   |                                          |   |                                           |   |                                         |

Rearrange this equation to solve for the starting debt given this model of a growth in credit card debt with quarterly interest?

Rearrange this equation to solve for the starting cash given this model of a monthly compounding growth of money in a savings

$$561 = D_0 \cdot (1 + 0.06)^{(2\cdot4)}$$

$$|561=D_0\cdot(1+0.06)^{(2\cdot4)}|$$
1, 13 $6=P_0\cdot(1+0.06)^{(4\cdot3)}$ 

$$oxed{P_0 = rac{1136}{(1-0.06)^{4\cdot3}}} P_0 = rac{1136}{(1+0.06)^{4\cdot3}}$$

Rearrange this equation to solve for the starting debt given this model of a growth in credit card debt with yearly interest?

Rearrange this equation to solve for the starting cash given this model of a quarterly compounding growth of money in a savings

$$\left| 1,799 = D_0 \cdot (1 + 0.04)^{(rac{28}{4})} 
ight| 885 = P_0 \cdot (1 + 0.04)^{(6\cdot4)}$$

$$885 = P_0 \cdot (1 + 0.04)^{(6\cdot4)}$$

| Α | $D_0 = \frac{1799}{\left(1 + 0.04\right)^{\frac{26}{4}}}$ | $BD_0 = 1799\cdot(1+0.04)^{28\cdot4}$ | Α | $P_0 = 885 \cdot (1 + 0.04)^{rac{6}{4}}$ | В | $P_0 = \frac{885}{(1+0.04)^{6\cdot 4}}$ |
|---|-----------------------------------------------------------|---------------------------------------|---|-------------------------------------------|---|-----------------------------------------|
| С | $D_0 = \frac{1799}{(1-0.04)^{\frac{28}{4}}}$              |                                       | С | $P_0 = \frac{885}{(1-0.04)^{6\cdot 4}}$   |   |                                         |
|   |                                                           |                                       |   |                                           |   |                                         |