

## mobius

## **Exponential Function Solution Equation Growth (Discrete, Mis-matched Time**



| Rearrange this equation to solve for the time given this model of a |  |
|---------------------------------------------------------------------|--|
| Rearrange this equation to solve for the time given this model of a |  |
| growth in credit card debt with quarterly interest?                 |  |

Rearrange this equation to solve for the time given this model of a growth in credit card debt with quarterly interest?

$$|885 = 700 \cdot (1 + 0.04)^{(t \cdot 4)}|317 = 200 \cdot (1 + 0.08)^{(t \cdot 4)}$$

| Α | $t=$ 4 $\cdot rac{ln rac{885}{700}}{ln \left(1+0.04 ight)}$             | B $t = \frac{1}{4} \cdot \frac{\ln 885 \cdot 700}{\ln (1 + 0.04)}$ | А | $t = rac{1}{4} \cdot rac{ \ln rac{317}{200}}{\ln \left( 1 + 0.08  ight)}$ | В | $t = 4 \cdot rac{\lnrac{317}{200}}{\ln\left(1 - 0.08 ight)}$              |
|---|---------------------------------------------------------------------------|--------------------------------------------------------------------|---|------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------|
| С | $t = rac{1}{4} \cdot rac{ln rac{885}{700}}{ln \left( 1 + 0.04  ight)}$ |                                                                    | С | $t=4\cdotrac{\lnrac{317}{200}}{\ln\left(1+0.08 ight)}$                     | D | $t = \frac{1}{4} \cdot \frac{\ln 317 \cdot 200}{\ln \left(1 + 0.08\right)}$ |
|   |                                                                           |                                                                    |   |                                                                              |   |                                                                             |

- 3 Rearrange this equation to solve for the time given this model of a growth in credit card debt with quarterly interest?
- Rearrange this equation to solve for the time given this model of a quarterly compounding growth of money in a savings account?

$$835 = 300 \cdot (1 + 0.05)^{(\frac{t}{3})}$$

 $835 = 300 \cdot (1 + 0.05)^{(\frac{t}{3})} | 530 = 500 \cdot (1 + 0.03)^{(t \cdot 4)}$ 

| Α | $t=rac{1}{3}\cdotrac{lnrac{835}{300}}{ln\left(1-0.05 ight)}$    | B $t = 3 \cdot \frac{\ln 835 \cdot 300}{\ln (1 + 0.05)}$ | Α | $t = 4 \cdot rac{ \ln rac{530}{500}}{ \ln \left( 1 + 0.03  ight)}$ | В | $t = rac{1}{4} \cdot rac{\ln 530 \cdot 500}{\ln \left( 1 + 0.03  ight)}$    |
|---|--------------------------------------------------------------------|----------------------------------------------------------|---|----------------------------------------------------------------------|---|-------------------------------------------------------------------------------|
| С | $t = 3 \cdot rac{  \lnrac{835}{300}}{  \ln\left(1 + 0.05 ight)}$ |                                                          | С | $t=4\cdotrac{lnrac{530}{500}}{ln(1-0.03)}$                         | D | $t = rac{1}{4} \cdot rac{ \ln rac{530}{500}}{ \ln \left( 1 + 0.03  ight)}$ |
|   |                                                                    |                                                          |   |                                                                      |   |                                                                               |

- 5 Rearrange this equation to solve for the time given this model of a yearly compounding growth of money in a savings account?
- Rearrange this equation to solve for the time given this model of a growth in credit card debt with monthly interest?

$$\left|1,905=400\cdot(1+0.05)^{(rac{t}{4})}
ight|$$

 $1,905 = 400 \cdot (1+0.05)^{(rac{t}{4})} | 797 = 400 \cdot (1+0.09)^{(t\cdot 3)}$ 

| Α | $t = 4 \cdot rac{\lnrac{1905}{400}}{\ln\left(1 + 0.05 ight)}$                | B $t = \frac{1}{4} \cdot \frac{\ln \frac{1905}{400}}{\ln (1 - 0.05)}$ | Α | $t=rac{1}{3}\cdotrac{lnrac{797}{400}}{ln\left(1+0.09 ight)}$ | В | $t = \frac{1}{3} \cdot \frac{ln797 \cdot 400}{ln(1 + 0.09)}$         |
|---|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|-----------------------------------------------------------------|---|----------------------------------------------------------------------|
| С | $t = rac{1}{4} \cdot rac{ \ln rac{1905}{400}}{ \ln \left( 1 + 0.05  ight)}$ |                                                                       | С | $t=3\cdotrac{lnrac{797}{400}}{lnoldsymbol(1+0.09oldsymbol)}$  | D | $t = 3 \cdot rac{ \ln rac{797}{400}}{ \ln \left( 1 - 0.09  ight)}$ |
|   |                                                                                |                                                                       |   |                                                                 |   |                                                                      |

- 7 Rearrange this equation to solve for the time given this model of a growth in credit card debt with yearly interest?
- Rearrange this equation to solve for the time given this model of a quarterly compounding growth of money in a savings account?

$$\left|1,802=700\cdot(1+0.03)^{\left(rac{t}{4}
ight)}
ight|$$

1,802 =  $700 \cdot (1 + 0.03)^{(\frac{t}{4})}$ 1,521 =  $300 \cdot (1 + 0.07)^{(\frac{t}{3})}$ 

| Α | $t=$ 4 $\cdot rac{ln rac{1802}{700}}{ln \left(1+0.03 ight)}$       | В | $t = rac{1}{4} \cdot rac{ \ln rac{1802}{700}}{\ln \left( 1 + 0.03  ight)}$ | А | $t = rac{1}{3} \cdot rac{ \ln rac{1521}{300}}{ \ln \left( 1 - 0.07  ight)}$ | В | $t=3\cdotrac{ln1521\cdot300}{ln(1+0.07)}$                                     |
|---|----------------------------------------------------------------------|---|-------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------|
| С | $t = 4 \cdot \frac{\ln 1802 \cdot 700}{\ln \left( 1 + 0.03 \right)}$ | D | $t = rac{1}{4} \cdot rac{\lnrac{1802}{700}}{\ln\left(1-0.03 ight)}$        | С | $t=3\cdotrac{\lnrac{1521}{300}}{\ln\left(1+0.07 ight)}$                      | D | $t = rac{1}{3} \cdot rac{ \ln rac{1521}{300}}{ \ln \left( 1 + 0.07  ight)}$ |
|   |                                                                      |   |                                                                               |   |                                                                                |   |                                                                                |