

mobius

Exponential Function Solving - Growth (Discrete, Mis-matched Time Units)

Solve for the starting debt given this model of a monthly compounding growth of money in a savings account?

growth in credit card debt with yearly interest?

$$oxed{648} = P_0 \cdot (1 + 0.04)^{(2\cdot 3)} oxed{12},864 = D_0 \cdot (1 + 0.07)^{(rac{48}{12})}$$

12, 864
$$= D_0 \cdot (1 + 0.07)^{(rac{48}{12})}$$

Α	$P_0 = \frac{P}{(1+r)^{t \cdot 3}}$	В	$P_0=P\cdot (1+r)^{rac{t}{3}}$	Α	$D_0 = D \cdot (1+r)^{t \cdot 12}$	В	$D_0 = rac{D}{(1-r)^{rac{t}{12}}}$
С	$P_0=\frac{P}{(1-r)^{t\cdot 3}}$			С	$D_0 = rac{D}{(1+r)^{rac{t}{12}}}$		

3 Solve for the starting cash given this model of a monthly compounding growth of money in a savings account?

Solve for the starting cash given this model of a monthly compounding growth of money in a savings

$$771 = P_0 \cdot (1 + 0.05)^{(2\cdot3)}$$

$$771 = P_0 \cdot (1 + 0.05)^{(2\cdot3)}$$
225 $= P_0 \cdot (1 + 0.03)^{(4\cdot3)}$

$$\stackrel{\mathsf{A}}{P_0} = rac{P}{(1+r)^{t\cdot 3}} \stackrel{\mathsf{B}}{P_0} = P \cdot (1+r)^{rac{t}{3}} \stackrel{\mathsf{A}}{=} rac{P_0 = rac{P}{(1-r)^{t\cdot 3}}}{\mathbb{C}} \stackrel{\mathsf{B}}{=} rac{P_0 = P \cdot (1+r)^{rac{t}{3}}}{\mathbb{C}}$$

5 Solve for the starting cash given this model of a quarterly compounding growth of money in a savings account?

Solve for the starting cash given this model of a yearly compounding growth of money in a savings account?

$$750 = P_0 \cdot (1 + 0.07)^{(6\cdot 4)}$$

$$|750 = P_0 \cdot (1 + 0.07)^{(6\cdot 4)}|$$
3, 193 $= P_0 \cdot (1 + 0.08)^{(rac{36}{12})}$

Α	$P_0 = \frac{P}{(1+r)^{t\cdot 4}}$	$oxed{B} \qquad P_0 = P \cdot (1+r)^{rac{t}{4}}$	$A P_0 = P \cdot (1+r)^{t \cdot 12}$	$egin{aligned} B & P_0 = rac{P}{(1-r)^{rac{t}{12}}} \end{aligned}$
С	$P_0 = \frac{P}{(1-r)^{t\cdot 4}}$		$oxed{C} P_0 = rac{P}{(1+r)^{rac{t}{12}}}$	

7 Solve for the starting debt given this model of a growth in credit card debt with monthly interest?

Solve for the starting cash given this model of a quarterly compounding growth of money in a savings

$$\left|930 = D_0 \cdot (1 + 0.05)^{(9\cdot3)} \right|$$
973 $= P_0 \cdot (1 + 0.04)^{(5\cdot4)}$

$$973 = P_0 \cdot (1 + 0.04)^{(5\cdot4)}$$

Α	$D_0 = \frac{D}{(1-r)^{t\cdot 3}}$	В	$D_0 = D \cdot (1+r)^{rac{t}{3}}$	Α	$P_0=P\cdot (1+r)^{rac{t}{4}}$	В	$P_0=\frac{P}{(1-r)^{t\cdot 4}}$
С	$D_0=\frac{D}{(1+r)^{t\cdot 3}}$			С	$P_0=\frac{P}{(1+r)^{t\cdot 4}}$		