

mobius

Exponential Function Solving - Growth (Discrete) Equation to Starting Value

Solve for the starting population given this model of a growth of a rabbit population (yearly breeding cycle)?

Solve for the starting debt given this model of a growth in credit card debt with quarterly interest?

$$|993 = P_0 \cdot (1 + 0.02)^{(5)} |684 = D_0 \cdot (1 + 0.04)^{(8)}$$

684
$$= D_0 \cdot (1 + 0.04)^{(8)}$$

Α	$P_0 = \frac{P}{(1+r)^t}$	В	$0+P_0=P\cdot (1+r)^t$	Α	$8+D_0=\frac{D}{(1-r)^t}$	В	$1+D_0=\frac{D}{(1-r)^t}$
С	$7+P_0=P\cdot (1+r)^t$	D	$9+P_0=\frac{P}{(1-r)^t}$	С	$4 + D_0 = \frac{D}{(1 - r)^t}$	D	$D_0 = \frac{D}{(1+r)^t}$

3 Solve for the starting population given this model of a growth of a rabbit population (yearly breeding cycle)?

Solve for the starting population given this model of a growth of an insect population that breeds once per year?

$$|684 = P_0 \cdot (1 + 0.04)^{(8)}|$$
1, 122 $= P_0 \cdot (1 + 0.07)^{(5)}$

$$1$$
, $122 = P_0 \cdot (1 + 0.07)^{(5)}$

Α	$7+P_0=\frac{P}{(1-r)^t}$	В	$P_0 = \frac{P}{(1+r)^t}$	Α	$6+P_0=P\cdot (1+r)^t$	$ B 5 + P_0 = P \cdot (1 + r)^t $
С	$6+P_0=\frac{P}{(1-r)^t}$	D	$9+P_0=\frac{P}{(1-r)^t}$	С	$P_0 = \frac{P}{(1+r)^t}$	

5 Solve for the starting cash given this model of a monthly compounding growth of money in a savings account?

Solve for the starting population given this model of a growth of a rabbit population (yearly breeding cycle)?

1, 033
$$= P_0 \cdot (1 + 0.02)^{(7)}$$

1,033 =
$$P_0 \cdot (1+0.02)^{(7)} | 562 = P_0 \cdot (1+0.04)^{(3)}$$

Α	$7+P_0=\frac{P}{(1-r)^t}$	В	$5+P_0=P\cdot (1+r)^t$	Α	$1+P_0=\frac{P}{(1-r)^t}$	В	$P_0 = \frac{P}{(1+r)^t}$
С	$3+P_0=P\cdot (1+r)^t$	D	$P_0 = \frac{P}{(1+r)^t}$	С	$2+P_0=P\cdot (1+r)^t$	D	$8+P_0=P\cdot (1+r)^t$

7 Solve for the starting population given this model of a growth of a rabbit population (yearly breeding cycle)?

Solve for the starting population given this model of a growth of an insect population that breeds once per year?

$$|1,204=P_0\cdot(1+0.06)^{(5)}$$

1, 204 =
$$P_0 \cdot (1+0.06)^{(5)} 936 = P_0 \cdot (1+0.06)^{(5)}$$

Α	$0 + P_0 = \frac{P}{(1 - r)^t}$	$oxed{B} 1 + P_0 = P \cdot (1+r)^t$	A 2	$P_0=P\cdot (1+r)^t$	В	$P_0 = \frac{P}{(1+r)^t}$
С	$P_0 = \frac{P}{(1+r)^t}$		С	$7+P_0=\frac{P}{(1-r)^t}$	D	$8+P_0=P\cdot (1+r)^t$