

mobius

Exponential Function Solving - Growth (Discrete, Mis-matched Time Units) -

2

Solve for the time given this model of a monthly
Solve for the time given this model of a monthly
compounding growth of money in a savings account?

Solve for the time given this model of a growth in credit card debt with monthly interest?

$$|503 = 400 \cdot (1 + 0.08)^{(t \cdot 3)}|711 = 500 \cdot (1 + 0.04)^{(t \cdot 12)}$$

Α	$t=rac{1}{3}\cdotrac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	$b t = 3 \cdot \frac{\ln \frac{P}{P_0}}{\ln (1-r)}$	Α	$t = rac{1}{12} \cdot rac{ln D \cdot D_0}{ln (1+r)}$	b $t=rac{1}{12}\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$
С	$t = \frac{1}{3} \cdot \frac{\ln P \cdot P_0}{\ln \left(1 + r \right)}$		С	$t=12\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	

- 3 Solve for the time given this model of a growth in credit card debt with yearly interest?
- Solve for the time given this model of a yearly compounding growth of money in a savings account?

$$3,360 = 400 \cdot (1 + 0.03)^{(\frac{t}{12})}$$

3, $360 = 400 \cdot (1+0.03)^{(\frac{t}{12})} 2$, $007 = 300 \cdot (1+0.02)^{(\frac{t}{12})}$

Α	$t=12\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	$t = rac{1}{12} \cdot rac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	Α	$t = rac{1}{12} \cdot rac{ \ln rac{P}{P_0}}{\ln \left(1 + r ight)}$	$B \qquad \qquad t = 12 \cdot rac{In P \cdot P_0}{In (1+r)}$
С	$t=12\cdotrac{\ln D\cdot D_0}{\ln \left(1+r ight)}$		С	$t=$ 12 $\cdot rac{\ln rac{P}{P_0}}{\ln \left(1+r ight)}$	

- 5 Solve for the time given this model of a growth in credit card debt with monthly interest?
- Solve for the time given this model of a yearly compounding growth of money in a savings account?

$$351 = 300 \cdot (1 + 0.02)^{(t \cdot 12)}$$
264, 790 $= 400 \cdot (1 + 0.07)^{(rac{t}{12})}$

Α	$t=12\cdotrac{\lnrac{D}{D_0}}{\ln\left(1-r ight)}$	В	$t=rac{1}{12}\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	Α	$t=12\cdotrac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	В	$t=$ 12 $\cdot rac{ \ln P \cdot P_0}{ \ln \left(1+r ight)}$
С	$t = rac{1}{12} \cdot rac{\ln D \cdot D_0}{\ln \left(1 + r ight)}$	D	$t=12\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	С	$t = rac{1}{12} \cdot rac{\ln rac{P}{P_0}}{\ln \left(1-r ight)}$		

- 7 Solve for the time given this model of a growth in credit card debt with monthly interest?
- Solve for the time given this model of a growth in credit card debt with yearly interest?

$$|574 = 500 \cdot (1 + 0.02)^{(t \cdot 3)}|10$$
, $778 = 900 \cdot (1 + 0.03)^{(rac{t}{12})}$

Α	$t = rac{1}{3} \cdot rac{\ln D \cdot D_0}{\ln \left(1 + r ight)}$	b $t=rac{1}{3}\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	$\ln \frac{D}{B}$	$\ln D \cdot D_0$
С	$t=3\cdotrac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$		$ t=12\cdot\frac{m_{D_0}}{1-t} t=$	$12 \cdot \frac{mD}{\ln(1+n)}$
			$\ln\left(1+r ight)$	$\ln\left(1+r\right)$