

mobius

Exponential Function Solving - Growth (Discrete) - Equation to Time

2

Solve for the time given this model of a growth of a rabbit population (yearly breeding cycle)?

Solve for the time given this model of a growth of an insect population that breeds once per year?

 $|1,074 = 900 \cdot (1+0.03)^{(t)}|789 = 600 \cdot (1+0.04)^{(t)}$

Α	$1+t=rac{\ln P\cdot P_0}{\ln \left(1+r ight)}$	В	$t=rac{\lnrac{P_{0}}{P_{0}}}{\ln\left(1+r ight)}$	Α	$t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	В	$7+t=rac{\ln P\cdot P_0}{\ln \left(1+r ight)}$
С	$4+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	D	$4+t=\frac{\ln P\cdot P_0}{\ln \left(1+r\right)}$	С	$9+t=rac{\ln P\cdot P_0}{\ln \left(1+r ight)}$	D	$5+t=rac{\ln P\cdot P_0}{\ln \left(1+r ight)}$

3 Solve for the time given this model of a growth of a rabbit population (yearly breeding cycle)?

Solve for the time given this model of a growth in credit card debt with quarterly interest?

 $735 = 600 \cdot (1 + 0.07)^{(t)} | 1,070 = 800 \cdot (1 + 0.06)^{(t)}$

$t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	$B \qquad \qquad 9 + t = \frac{\ln \frac{P}{P_0}}{\ln \left(1 - r\right)}$	A $3+t=rac{\lnrac{D}{D_0}}{\ln\left(1-r ight)}$	$t = rac{\ln rac{D}{D_0}}{\ln \left(1 + r ight)}$
C $5+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	$D \qquad \qquad 9 + t = \frac{ln P \cdot P_0}{ln (1 + r)}$	C	D 4 $+$ $t=rac{lnrac{D}{D_0}}{ln(1-r)}$

5 Solve for the time given this model of a monthly compounding growth of money in a savings account?

Solve for the time given this model of a quarterly compounding growth of money in a savings account?

$$684 = 500 \cdot (1 + 0.04)^{(t)} 848 = 800 \cdot (1 + 0.03)^{(t)}$$

Α	$6+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	В	$5+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	Α	$t=rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$	В	$6+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$
С	$t = \frac{\ln \frac{P}{P_0}}{\ln \left(1 + r\right)}$	D	$8+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	С	$3+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	D	$8+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$

7 Solve for the time given this model of a growth in credit card debt with yearly interest?

Solve for the time given this model of a monthly compounding growth of money in a savings account?

 $735 = 400 \cdot (1 + 0.07)^{(t)} 865 = 800 \cdot (1 + 0.04)^{(t)}$

Α	$4+t=rac{lnrac{D}{D_0}}{ln(1-r)}$	В	$t=rac{\lnrac{D}{D_0}}{\ln\left(1+r ight)}$	Α	$3+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	$t = rac{\lnrac{P}{P_0}}{\ln\left(1+r ight)}$
С	$9+t=rac{\ln D\cdot D_0}{\ln \left(1+r ight)}$	D	$8+t=rac{\lnrac{D}{D_0}}{\ln\left(1-r ight)}$	С	$8+t=rac{\lnrac{P}{P_0}}{\ln\left(1-r ight)}$	