

mobius

Function Inverse - Two Functions to Is Inverse (Exponential/Logarithmic)

1

given:

Is y(x) the inverse of m(x)

$$m(x) = -2\log(5x)$$

$$y(x)=\frac{10^{\frac{x}{-2}}}{5}$$

Α	В
Yes	No

2

given:

Is y(x) the inverse of z(x)

$$z(x) = 4\log\left(-3x\right)$$

$$y(x)=rac{10^{rac{x}{4}}}{-3}$$

Α	В
Yes	No

3

given:

$$n(x) = {\sf 5}^{2x}$$
 Is y(x) the inverse of n(x)

$$log_{i}$$

$$y(x) = \frac{\log_5 x}{2}$$

Α	В	
Ye	es	No

4

given:

Is y(x) the inverse of y(x)

$$y(x) = -4\log_2(3x)$$

$$y(x)=\frac{2^{\frac{x}{-4}}}{3}$$

Α		E
	\/	

No

5

given:

Is y(x) the inverse of p(x)

$$p(x) = -4 \cdot -3^{5x}$$

$$y(x) = rac{\mathsf{log}_{\scriptscriptstyle{-}} \, \mathsf{3} rac{x}{-4}}{\mathsf{5}}$$
 A Yes No

6

given:

x Is y(x) the inverse of r(x)

Is y(x) the inverse of p(x)

$$r(x) = 2 \cdot -4^{-3x}$$

$$y(x) = rac{\mathsf{log}_{-}\,\mathsf{4}rac{x}{2}}{-\mathsf{3}}$$
 A Yes No

7

given:

Is y(x) the inverse of p(x)

$$p(x) = 5\log_3(-2x)$$

$$y(x) = \frac{3^{\frac{x}{5}}}{-2}$$

Α		В	
	Yes		No

8 given:

 $p(x) = 5^{2x}$

 $y(x) = rac{\log_5 x}{2}$ res

No