

mobius

Sinusoidal Function Parameters (2 **Params) - Function to Parameters**

1	What are the phase shift and amplitude of this
	sinusoidal function?

What are the phase shift and amplitude of this sinusoidal function?

$$f(x) = rac{5}{7}\cos(rac{8}{2}x + rac{6}{5}\pi) + rac{2}{11}.$$

	a / \	6	, 8	6	5
-	f(x) =	$\frac{1}{3}\cos$	$(rac{8}{11}\pi x +$	$(-\pi)$	2

Α	${ m Amplitude} = rac{5}{7}$ ${ m Phase Shift} = -rac{6}{5}\pi \ { m right}$	B Amplitud Phase Shift	,	$\begin{array}{ll} Amplitude &= \frac{6}{5} \\ Phase Shift &= \frac{6}{3} \pi \ left \end{array}$	В	$\begin{array}{ll} Amplitude &= \frac{6}{3} \\ Phase Shift &= -\frac{6}{5} \pi right \end{array}$
С	$\begin{array}{ll} {\sf Amplitude} &= \frac{5}{7} \\ {\sf Phase Shift} &= \frac{6}{5}\pi \ {\sf left} \end{array}$	D Amplitud Phase Shift	۵,	$\begin{array}{ll} Amplitude &= \frac{6}{3} \\ Phase Shift &= \frac{6}{5} left \end{array}$	D	$\begin{array}{ll} Amplitude = \frac{6}{3} \\ PhaseShift = \frac{6}{5}\pileft \end{array}$

2

$$f(x) = rac{5}{3}\sin(rac{4}{11}\pi x + rac{4}{7}) + rac{2}{11} f(x) = -rac{6}{5}\cos(rac{6}{3}\pi x + rac{8}{5}) + rac{3}{5}$$

$$f(x) = -rac{6}{5}\cos(rac{6}{3}\pi x + rac{8}{5}) + rac{3}{5}$$

Α	$\begin{array}{ll} {\sf Amplitude} &= \frac{5}{3} \\ {\sf Phase Shift} &= \frac{4}{7} {\sf left} \end{array}$	В	${\sf Amplitude} = rac{5}{3}$ ${\sf Phase Shift} = rac{4}{7}\pi \ {\sf left}$	Α	Amplitude $=rac{6}{5}$ Phase Shift $=rac{8}{5}\pi$ left	В	$\begin{array}{ll} Amplitude &= \frac{6}{5} \\ Phase Shift &= \frac{8}{5} left \end{array}$
С	$\begin{array}{ll} Amplitude &= \frac{5}{3} \\ Phase Shift &= -\frac{4}{7} right \end{array}$	D	$\begin{array}{ll} Amplitude &= \frac{5}{3} \\ Phase Shift &= -\frac{4}{7}\piright \end{array}$	С	$\begin{array}{ll} Amplitude &= \frac{8}{5} \\ Phase Shift &= -\frac{6}{5} right \end{array}$	D	$\begin{array}{ll} {\sf Amplitude} &= \frac{6}{5} \\ {\sf Phase Shift} &= -\frac{8}{5} {\sf right} \end{array}$

$$f(x) = \frac{4}{3}\cos(\frac{7}{2}\pi x + \frac{8}{2}) + \frac{5}{3}f(x) = \frac{6}{2}\cos(\frac{4}{2}\pi x + \frac{8}{11}\pi) + \frac{4}{7}$$

$$f(x) = \frac{6}{2}\cos(\frac{4}{2}\pi x + \frac{8}{11}\pi) + \frac{4}{7}$$

Amplitude
$$=\frac{5}{3}$$
Vertical Shift $=\frac{4}{3}$

Amplitude
$$=\frac{4}{3}$$

Vertical Shift $=\frac{5}{3}$

Amplitude
$$=\frac{5}{3}$$
Vertical Shift $=\frac{4}{3}$
Vertical Shift $=\frac{5}{3}$
Vertical Shift $=\frac{4}{3}$
Vertical Shift $=\frac{4}{3}$
Period $=\frac{4}{4}$
Period $=\frac{6}{2}$
Period $=\frac{4}{4}$
Period $=\frac{4}{4}$
Period $=\frac{4}{4}$

$$f(x) = -rac{2}{3}\sin(rac{8}{2}x + rac{7}{3}\pi) + rac{7}{2}$$

$$f(x) = -rac{2}{3}\sin(rac{8}{2}x + rac{7}{3}\pi) + rac{7}{2}f(x) = -rac{2}{5}\sin(rac{3}{2}\pi x + rac{6}{3}\pi) + rac{2}{5}$$