

mobius

Function Transformations (Definition) Double Definition (Variables) to

T
Which function g(x) shows these
transformations of f(x)?

Vertical compression: nHorizontal compression: r

Which function g(x) shows these transformations of f(x)? Reflect in X-Axis Shift left: r

$${}^{ extsf{A}}g(x) = -f(x+r)$$
 ${}^{ extsf{B}}g(x) = f(-x+r)$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

3 Which function g(x) shows these transformations of f(x)?

$$egin{aligned} \left| egin{aligned} g(x) &= f(x+z) - p \end{aligned}
ight|^{oldsymbol{4}} \end{aligned}$$

Which function g(x) shows these transformations of f(x)?

Reflect in X-Axis Shift down: w

Shift down:
$$p_{c}$$

$$g(x)=f(x+z)+p$$

g(x) = f(x-z) - p

Shift left:
$$z \mid g(x) = f(x+z) + p \mid^{\mathsf{A}} g(x) = -f(x) - w \mid^{\mathsf{B}} g(x) = -f(x) + w$$

$$^{ extsf{c}}g(x)=f(-x)-w$$

Shift down:
$$p$$

5

7

Reflect in Y-Axis
Shift left:
$$p$$

$$\stackrel{ ext{?}}{g} \stackrel{ ext{A}}{g}(x) = f(x+z) - t$$

$$A_{a}(x) = f(-x-n) B_{a}(x)$$

Which function g(x) shows these transformations of f(x)?

$${}^{\mathsf{A}}g(x) = f(-x-p)$$
 ${}^{\mathsf{B}}g(x) = f(-x+p)$

Shift left:
$$z | g(x) = f(x-z) - t$$

$$^{\mathtt{C}}g(x)=f(-x)-p$$

Shift down:
$$t$$

$$g(x) = f(x+t) - z$$

Which function g(x) shows these transformations of f(x)?

Vertical stretch: m Horizontal stretch: q

Which function g(x) shows these transformations of f(x)?

Horizontal stretch: r Shift left: z

$g(x) = q \cdot f(m \cdot x)$	$\overset{B}{g}(x) = m \cdot f(q \cdot x)$	$g(x) = m \cdot f(q \cdot x)$.
$q \ge 1$	$m \geq 1$	$m \ge 1$
$m \leq 1$	$q \geq 1$	$q \le 1$

A
$$g(x) = f(r \cdot x + z)$$
 $g(x) = f(r \cdot x + z)$ $g(x) = r \cdot f(x + z)$ $g(x) = r \cdot f(x + z)$ $g(x) = r \cdot f(x + z)$