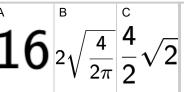
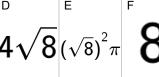
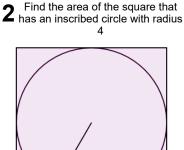
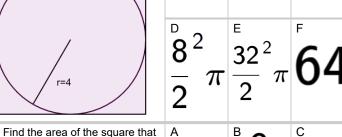
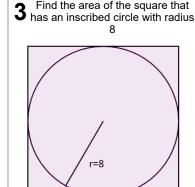

mobius

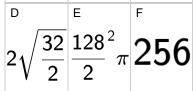

Inscribed Circle in Square - Circle Radius to Square Area

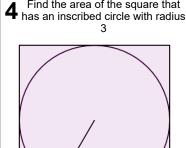


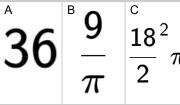


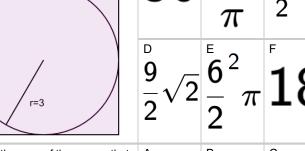


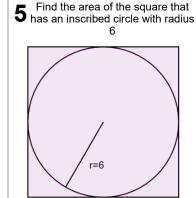


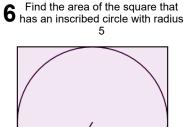


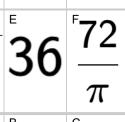

 $3216\pi_{21}$

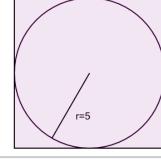




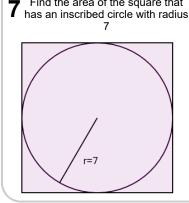

$$\begin{array}{c|c} 64 & 128 & 2\sqrt{\frac{32}{2\pi}} \end{array}$$







$$\begin{array}{c|c} ^{\text{A}} & 144 & 72 & \frac{12}{2}^{2} \\ \end{array}$$


$$\frac{1}{2}\sqrt{\frac{36}{2}}$$
 $\frac{1}{36}$ $\frac{72}{\pi}$

	E	F
50	13 ²	13π
$\overline{\pi}$	$\frac{\pi}{2}$	13/1

Find the area of the square that

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ π

D	E	
$\frac{98}{2}\sqrt{2}$	98	