

Inscribed Square in Circle - Square Area to Circle Radius

1 Find the radius of the circle with a square of area 25 inscribed	$2\sqrt{\frac{13}{2}}$	$\frac{13}{2}^2\pi$	$\frac{^{\circ}13}{\pi}$	2 Find the radius of the circle with a square of area 4 inscribed	$\frac{8}{4}\sqrt{2}$	$2\sqrt{rac{4}{2\pi}}$	$\frac{c}{4}\sqrt{2}$
	$\frac{50}{4}\sqrt{2}$	$\frac{25}{4}\sqrt{2}$	$\frac{25^2}{2}\pi$		$\frac{8}{2}\sqrt{2}$	4π	$2\sqrt{\frac{4}{2}}$
3 Find the radius of the circle with a square of area 49 inscribed	$\frac{^{\hat{2}}}{\pi}$	$\frac{98}{4}\sqrt{2}$	$ \begin{array}{c} c\\ 2\sqrt{\frac{25}{2}} \end{array} $	4 Find the radius of the circle with a square of area 9 inscribed	$\frac{\overset{\scriptscriptstyleA}{6}}{2}\sqrt{2}$	$\frac{5}{2}^2 \pi$	$\frac{^{\circ}}{9}\sqrt{2}$
r=?	⁵ 49	$\frac{49}{4}\sqrt{2}$	$\frac{14^2}{2}\pi$	r=?	$4\sqrt{6}$	$\frac{18}{4}\sqrt{2}$	$\frac{1}{\pi}$
5 Find the radius of the circle with a square of area 64 inscribed	$\frac{^{\text{A}}}{64}^{2}\pi$	$\frac{128}{4}\sqrt{2}$	^c 32	6 Find the radius of the circle with a square of area 16 inscribed	^A 8	$\frac{32}{4}\sqrt{2}$	
r=?	$\frac{2}{64}\sqrt{2}$	$\frac{1}{64}$	π $2\sqrt{\frac{16}{2\pi}}$	r=?	π 32	$\frac{16}{4}\sqrt{2}$	$\frac{2}{5}$ $2\sqrt{\frac{8}{2\pi}}$
7 Find the radius of the circle with a square of area 36 inscribed	A $(\sqrt{36})^2\pi$	$\frac{72}{2}\sqrt{2}$	$\frac{c}{36}\sqrt{2}$				
r=?	$2\sqrt{\frac{36}{2}}$	$\frac{1}{2}$ $\frac{72}{4} \sqrt{2}$	$\frac{36}{2}^{2}\pi$				