

mobius

Line Segment (Points) - Find Perpendicular Bisector (Formula)

1 Find the equation for the perpendicular bisector of segment AB

Point A: (1, 10) Point B: (7, 6) 2 Find the equation for the perpendicular bisector of segment AB

Point A: (5, 10) Point B: (7, 8)

Α	$y=\frac{3}{2}x+‐8$	В	$y=\frac{3}{2}x+\frac{5}{2}$	Α	$y=\frac{1}{4}x+\frac{15}{2}$	В	y=1x+1	
С	$y=\frac{3}{2}x+2$	D	$y=\frac{3}{2}x+6$	С	y = 1x + 3	D	y=1x+-3	

Find the equation for the perpendicular bisector of segment AB

Point A: (6, 7) Point B: (8, 3) Find the equation for the perpendicular bisector of segment AB

Point A: (1, 9) Point B: (3, 7)

Α	$y=\frac{1}{2}x+\frac{9}{2}$	В	$y=\frac{1}{2}x+3$	Α	y = 1x + 3	В	y = 1x + -6
С	$y=\frac{1}{2}x+\frac{1}{2}$	D	$y=\frac{1}{2}x+\frac{3}{2}$	С	y=1x+6	D	$y=\frac{1}{4}x+\frac{15}{2}$

Find the equation for the perpendicular bisector of segment AB

Point A: (1, 10) Point B: (5, 2) **6** Find the equation for the perpendicular bisector of segment AB

Point A: (4, 10) Point B: (8, 4)

Α	y=2x+-0	В	$y=\frac{4}{7}x+\frac{30}{7}$	Α	$y=\frac{2}{3}x+\frac{19}{3}$	В	$y=rac{2}{3}x+4$
С	$y=\frac{1}{2}x+\frac{9}{2}$	D	$y=\frac{1}{2}x+-0$	С	$y=\frac{2}{3}x+\frac{4}{3}$	D	$y=\frac{2}{3}x+3$

8

7 Find the equation for the perpendicular bisector of segment AB

Point A: (4, 2) Point B: (8, 8) Find the equation for the perpendicular bisector of segment AB

Point A: (2, 1) Point B: (6, 3)

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline A & y = -\frac{2}{3}x + \frac{28}{3} & B & y = -\frac{2}{3}x + 9 & A & y = 7x + -26 & B & y = -2x + 12 \\ \hline C & y = -\frac{2}{3}x + \frac{16}{3} & D & y = -\frac{3}{2}x + 14 & C & y = -2x + 10 & D & y = -5x + 22 \\ \hline \end{array}$$