

mobius

Linear Equation Systems - Simple Equation Substitution To Equation

1	Substitute the second
ı	equation into the first
	equation to form a single
	solvable equation

$$7x+y=$$
 51 $_{^{\mathrm{c}}$ 7 $x+6x-7=51}$

$$y = 2x + 6$$

 $x = ?$

A
$$6x + 2x + 3 = 51$$

B
$$7x + 2x + 4 = 6$$

C
$$7x + 6x - 7 = 51$$

D
$$7x + 2x + 6 = 51$$

E
$$7x + 6x + 7 = 51$$

$$6x - 2x - 3 = 51$$

$$5d + r = 72$$

$$r = 3d + 8$$

Substitute the second

equation into the first

equation to form a single

solvable equation

d = 3p + 4

p = ?

Substitute the second

equation into the first

equation to form a single

solvable equation

10y - z =

^A
$$10d + 3d + 8 = 72$$

^B
$$9d - 3d - 6 = 72$$

C
$$9d + 3d + 6 = 72$$

D
$$5d + 3d + 7 = 9$$

E
$$5d + 3d + 8 = 72$$

$$^{\sf F} \, 5d + 9d + 10 = 72$$

$$7r + b = 97$$

$$b = 10r + 12$$

$$r = ?$$

A
$$7r + 10r + 4 = 6$$

^B
$$6r - 10r - 3 = 97$$

$$^{\text{C}}$$
 $7r + 6r - 7 = 97$

$$^{
m D}$$
 $6r+10r+3=97$

$$^{\mathsf{E}} \, 7r + 10r + 12 = 97$$

F
$$7r + 6r + 7 = 97$$

A
$$9c + 7c + 8 = 86$$

B
$$7c-5c-4=86$$

C
$$7c + 5c + 4 = 86$$

$$^{\mathsf{D}} \ \ 9c + 5c + 2 = 86$$

E
$$9c + 5c + 5 = 7$$

^F
$$8c + 5c + 2 = 86$$

4

Substitute the second equation into the first equation to form a single solvable equation

$$12c + d = 108$$

$$d = 3c + 3$$

$$c = ?$$

A
$$6p - 3p - 3 = 36$$

$$| ^{\mathsf{B}} \ 11p - 6p + 7 = 36 |$$

$$11p-d=36$$
 c $_{11p-3p-4=6}$

^D
$$11p - 3p - 4 = 36$$

$$^{\rm E}$$
 $7p+3p-4=36$

$$^{\mathsf{F}} 6p - 3p + 3 = 36$$

A
$$10y - 3y + 4 = 7$$

B
$$3y - 5y - 0 = 7$$

C
$$3y - 5y + 0 = 7$$

$$z = 5y + 3^{-10y - 5y - 1 = 3}$$

E
$$4y + 5y - 3 = 7$$

$$10y - 5y - 3 = 7$$

$$8c - 3c - 5 = 108$$

$$\frac{12c + 3c + 3 = 108}{2}$$

$$^{\circ}$$
 9 $c+3c+3=108$

^D
$$12c + 8c + 9 = 108$$

E
$$8c + 3c + 5 = 108$$

F
$$12c + 3c + 6 = 8$$

$$9c+z=86$$

$$z = 5c + 2$$

$$c = ?$$

7

Substitute the second

equation into the first

equation to form a single

solvable equation

p = 5z + 10

z = ?

$$A ext{4}z - 5z - 1 = 58$$

$$^{\sf B} \ 11z + 4z + 5 = 58$$

$$11z+p=58$$
| c 5 $z+5z+10=58$

D
$$4z + 5z + 1 = 58$$

$$^{\mathsf{E}} 11z + 5z + 10 = 58$$

F
$$11z + 5z + 2 = 4$$