

## mobius

## **Logarithms - Change of Base - Fraction** to Single (Variables)



|                     | ,                                                                                       |                     |                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|
| $\log_x y$          | Convert the given logarithm fraction<br>to its simplified form with a change of<br>base | $\log_y n$          | Convert the given logarithm fraction to its simplified form with a change of base       |
| $\overline{log_xq}$ | $racksquare log_q  y racksquare log_y  q$                                               |                     | $oxed{log_n  m}^{\scriptscriptstyle B} oxed{log_m  n}$                                  |
| $\log_x w$          | Convert the given logarithm fraction<br>to its simplified form with a change of<br>base | $\log_y z$          | Convert the given logarithm fraction<br>to its simplified form with a change of<br>base |
| <u> </u>            | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                    | $\overline{log_yp}$ | $racklosin_{p}^{p} z racklosin_{p}^{p} z$                                               |
| $\log_r z$          | Convert the given logarithm fraction to its simplified form with a change of base       | $\log_m x$          | Convert the given logarithm fraction to its simplified form with a change of base       |
| $\overline{log_rx}$ | $\log_z x \log_x z$                                                                     | $\overline{log_mp}$ | $racksquare log_p x racksquare log_x p$                                                 |

7

Convert the given logarithm fraction to its simplified form with a change of

Convert the given logarithm fraction to its simplified form with a change of

 $\overline{\log_y z} \mid_{\log_z r \mid \log_r z} \mid \log_m r \mid_{\log_n r \mid \log_r n}$