

mobius

Logarithms - Change of Base - Single (Integers) To Fraction

1 Convert the given logarithm to the equivalent in base 3		$\frac{\log_3 12}{\log_3 9}$	 2	the equivalent in base 5		$\frac{\log_7 6}{\log_7 5}$	
log ₉ 12	log ₃ 9 log ₃ 12			og ₇ 6	log ₆ 7		
3 Convert the given logarithm to the equivalent in base 8	l 	log ₅ 9 log ₅ 8	 4	the equivalent in base 7		$\frac{\log_{12} 10}{\log_{12} 7}$	
$\log_5 9$			10	1.	$\frac{\log_{12}7}{\log_{12}10}$		
5 Convert the given logarithm to the equivalent in base 5		$\frac{\log_5 2}{\log_5 13}$		the equivalent in been 7	$\frac{\log_8 10}{\log_8 7}$	$\frac{\log_7 10}{\log_7 8}$	
log ₂ 13	$\frac{\log_{13} 2}{\log_{13} 5}$			\log_{10} o	log ₈ 7		
7 Convert the given logarithm to the equivalent in base 9		$\frac{\log_9 10}{\log_9 7}$		the equivalent in base 2		$\frac{\log_2 10}{\log_2 5}$	
log ₇ 10	$\frac{\log_{10} 7}{\log_{10} 9}$			()V_ III	log ₁₀ 2 log ₁₀ 5		