

mobius

Logarithm Algebra (Power Property) - Isolote Exponent, One Binomial

Use the power rule to simplify this and solve for 'z'

$$6^{(-6q+3)} = 3^{(3q)}$$

$$7^{(-7z-7)} = 6^{(-7z)}$$

Α	$q = \frac{-3 \ln 6}{-6 \ln 6 - 3 \ln 3}$	$ B q = \frac{-3 \ln 3}{-6 \ln 3 - 3 \ln 6} $	Α	$z = \frac{-7 \ln 6 + 7 \ln 7}{-7 \ln 7 - 2 \ln 6}$	$B z = \frac{7 \ln 6}{-7 \ln 6 + 7 \ln 7}$
С	$q = \frac{3 \ln 3 + 6 \ln 6}{3 \ln 6 - 2 \ln 3}$		С	$z = \frac{7 \ln 7}{-7 \ln 7 + 7 \ln 6}$	

3 Use the power rule to simplify this and solve for 'x'

$$5^{(-1x-2)} = 10^{(-2x)}$$

4	Use the power rule to simplify this and solve for
	'm'

$$3^{(-8m+9)} = 2^{(8m)}$$

Α	$x = \frac{2 \ln 5}{-1 \ln 5 + 2 \ln 10}$	$B x = \frac{2 \ln 10}{-1 \ln 10 + 2 \ln 5}$	А	$m = \frac{-9 \ln 3}{-8 \ln 3 - 8 \ln 2}$	$B m = \frac{8 \ln 2 + 8 \ln 3}{9 \ln 3 - 2 \ln 2}$
С	$x = \frac{-2 \ln 10 + \ln 5}{-2 \ln 5 - 2 \ln 10}$		С	$m = \frac{-9 \ln 2}{-8 \ln 2 - 8 \ln 3}$	

5 Use the power rule to simplify this and solve for 6

$$9^{(-5t-9)} = 5^{(9t)}$$

$$2^{(7n-6)} = 4^{(-9n)}$$

Α	$t = \frac{9 \ln 5}{-5 \ln 5 - 9 \ln 9}$	$b t = \frac{9 \ln 9}{-5 \ln 9 - 9 \ln 5}$	Α	$n = \frac{-9 \ln 4 - 7 \ln 2}{-6 \ln 2 - 2 \ln 4}$	$B \qquad \qquad n = \frac{6 \ln 4}{7 \ln 4 + 9 \ln 2}$
С	$t = \frac{9 \ln 5 + 5 \ln 9}{-9 \ln 9 - 2 \ln 5}$		С	$n=\frac{6\ln 2}{7\ln 2+9\ln 4}$	

7 Use the power rule to simplify this and solve for 'r'

$$\mathbf{4}^{(9r+9)} = \mathbf{10}^{(7r)}$$

$$2^{(-5t-2)} = 8^{(-8t)}$$

Α	$r = \frac{7 \ln 10 - 9 \ln 4}{9 \ln 4 - 2 \ln 10}$	$ B \qquad r = \frac{-9 \ln 10}{9 \ln 10 - 7 \ln 4} $	Α	$t = \frac{-8 \ln 8 + 5 \ln 2}{-2 \ln 2 - 2 \ln 8}$	В	$t = \frac{2 \ln 2}{-5 \ln 2 + 8 \ln 8}$
С	$r = \frac{-9 \ln 4}{9 \ln 4 - 7 \ln 10}$		С	$t = \frac{2 \ln 8}{-5 \ln 8 + 8 \ln 2}$		