

mobius

Logarithm Algebra (Power Property) - Isolote Exponent, Two Binomials

Use the power rule to simplify this and solve for 'z'

$$7^{(n+8)} = 9^{(n+4)}$$

$$4^{(z-3)} = 6^{(z-3)}$$

Α	$n = \frac{4 \ln 7 - 8 \ln 9}{\ln 9 - \ln 7}$	B $n = \frac{4 \ln 9 - 8 \ln 7}{\ln 7 - 1 \ln 9}$	Α	$z = \frac{\ln 6 - \ln 4}{-3 \ln 4 + 3 \ln 6}$	$B z = \frac{-3 \ln 4 + 3 \ln 6}{\ln 6 - \ln 4}$
С	$n = \frac{\ln 9 - \ln 7}{8 \ln 7 - 4 \ln 9}$		С	$z = \frac{-3\ln 6 + 3\ln 4}{\ln 4 - 1\ln 6}$	

Use the power rule to simplify this and solve for 'r'

$$8^{(r-2)} = 10^{(r+2)}$$

$$9^{(y-5)} = 2^{(y-9)}$$

Α	$r = \frac{2 \ln 10 + 2 \ln 8}{\ln 8 - 1 \ln 10}$	$B r = \frac{\ln 10 - \ln 8}{-2 \ln 8 - 2 \ln 10}$	Α	$y = \frac{\ln 2 - \ln 9}{-5 \ln 9 + 9 \ln 2}$	В	$y = \frac{-9 \ln 9 + 5 \ln 2}{\ln 2 - \ln 9}$
С	$r = \frac{2 \ln 8 + 2 \ln 10}{\ln 10 - \ln 8}$		С	$y = \frac{-9 \ln 2 + 5 \ln 9}{\ln 9 - 1 \ln 2}$		

5 Use the power rule to simplify this and solve for 6

$$6^{(x+3)} = 5^{(x+1)}$$

$$4^{(r+7)} = 9^{(r+4)}$$

Α	$x = \frac{1 \ln 6 - 3 \ln 5}{\ln 5 - \ln 6}$	$B \qquad \qquad x = \frac{\ln 5 - \ln 6}{3 \ln 6 - \ln 5}$	Α	$r = \frac{4 \ln 9 - 7 \ln 4}{\ln 4 - 1 \ln 9}$	$ B r = \frac{\ln 9 - \ln 4}{7 \ln 4 - 4 \ln 9} $
С	$x = \frac{\ln 5 - 3 \ln 6}{\ln 6 - 1 \ln 5}$		С	$r = \frac{4 \ln 4 - 7 \ln 9}{\ln 9 - \ln 4}$	

7 Use the power rule to simplify this and solve for 'y'

$$9^{(y-7)} = 2^{(y-2)}$$

$$8^{(m-8)} = 6^{(m+9)}$$

Α	$y = \frac{\ln 2 - \ln 9}{-7 \ln 9 + 2 \ln 2}$	B $y = \frac{-2 \ln 2 + 7 \ln 9}{\ln 9 - 1 \ln 2}$	Α	$m = \frac{9 \ln 8 + 8 \ln 6}{\ln 6 - \ln 8}$	B $m = \frac{\ln 6 - \ln 8}{-8 \ln 8 - 9 \ln 6}$
С	$y = \frac{-2 \ln 9 + 7 \ln 2}{\ln 2 - \ln 9}$		С	$m = \frac{9 \ln 6 + 8 \ln 8}{\ln 8 - 1 \ln 6}$	