

mobius

Logarithm Algebra (Power Property) -Isolote Exponent, Two Binomials

Use the power rule to simplify this and solve for

$$3^{(-3z-3)}=6^{(-9z+9)}$$

$$3^{(-3z-3)} = 6^{(-9z+9)} | 10^{(-3p+4)} = 2^{(-6p-6)}$$

Α	$z = \frac{9 \ln 3 + 3 \ln 6}{-3 \ln 6 + 9 \ln 3}$	$B z = \frac{9 \ln 6 + 3 \ln 3}{-3 \ln 3 + 9 \ln 6}$	Α	$p = \frac{-6\ln 10 - 4\ln 2}{-3\ln 2 + 6\ln 10}$	B $p = \frac{-6 \ln 2 - 4 \ln 10}{-3 \ln 10 + 6 \ln 2}$
С	$z = \frac{-9 \ln 6 + 3 \ln 3}{-3 \ln 3 - 9 \ln 6}$		С	$p = \frac{-6\ln 2 + 3\ln 10}{4\ln 10 + 6\ln 2}$	

3 Use the power rule to simplify this and solve for 4

$$\mathbf{7}^{(-1t+2)} = \mathbf{4}^{(5t+9)}$$

$$\mathbf{7}^{(-3x+9)} = \mathbf{5}^{(-9x-4)}$$

Α	$t = \frac{5 \ln 4 + \ln 7}{2 \ln 7 - 9 \ln 4}$	$b t = \frac{9 \ln 7 - 2 \ln 4}{-1 \ln 4 - 5 \ln 7}$	Α	$x = \frac{-4 \ln 7 - 9 \ln 5}{-3 \ln 5 + 9 \ln 7}$	B $x = \frac{-9 \ln 5 + 3 \ln 7}{9 \ln 7 + 4 \ln 5}$
С	$t = \frac{9 \ln 4 - 2 \ln 7}{-1 \ln 7 - 5 \ln 4}$		С	$x = \frac{-4 \ln 5 - 9 \ln 7}{-3 \ln 7 + 9 \ln 5}$	

5 Use the power rule to simplify this and solve for 6

$$7^{(-8r-6)} = 4^{(-4r+6)}$$

$$\mathbf{5}^{(2p+9)} = \mathbf{8}^{(2p+9)}$$

Α	$r = \frac{6 \ln 7 + 6 \ln 4}{-8 \ln 4 + 4 \ln 7}$	$ B \qquad r = \frac{-4 \ln 4 + 8 \ln 7}{-6 \ln 7 - 6 \ln 4} $	Α	$p = \frac{2 \ln 8 - 2 \ln 5}{9 \ln 5 - 9 \ln 8}$	$ B p = \frac{9 \ln 5 - 9 \ln 8}{2 \ln 8 - 2 \ln 5} $
С	$r = rac{6 \ln 4 + 6 \ln 7}{-8 \ln 7 + 4 \ln 4}$		С	$p = \frac{9 \ln 8 - 9 \ln 5}{2 \ln 5 - 2 \ln 8}$	

7 Use the power rule to simplify this and solve for 8

$$2^{(7n-1)} = 7^{(-5n-6)}$$

$$9^{(-6p+4)} = 2^{(p+7)}$$

Α	$n = \frac{-6 \ln 2 + 1 \ln 7}{7 \ln 7 + 5 \ln 2}$	B $n = \frac{-5 \ln 7 - 7 \ln 2}{-1 \ln 2 + 6 \ln 7}$	Α	$p = \frac{7 \ln 9 - 4 \ln 2}{-6 \ln 2 - \ln 9}$	B $p = \frac{7 \ln 2 - 4 \ln 9}{-6 \ln 9 - 1 \ln 2}$
С	$n = \frac{-6 \ln 7 + \ln 2}{7 \ln 2 + 5 \ln 7}$		С	$p = \frac{\ln 2 + 6 \ln 9}{4 \ln 9 - 7 \ln 2}$	