

mobius

Logarithms - Product Property - Product to Sum (Variables)

Convert the given logarithm to its equivalent based on the product property

 $\log_x(p\cdot w)$

Convert the given logarithm to its equivalent based on the product property

 $\log_p(n\cdot m)$

Α	$p \cdot log_x w$	В	$\log_x p + \log_x w$	Α	$n \cdot \log_p m$	В	$\log_m p + \log_p n$
С	$\log_w x + \log_x p$			С	$\log_p n + \log_p m$		

Convert the given logarithm to its equivalent based on the product property

Convert the given logarithm to its equivalent based on the product property

 $\log_m(p\cdot n)$

 $\log_m(p\cdot q)$

A	$\log_n m + \log_m p$	B $p \cdot \log_m n$	Α	$p \cdot log_m q$	В	$\log_m p + \log_m q$
($\log_m p + \log_m n$		С	$\log_q m + \log_m p$		
Г						

Convert the given logarithm to its equivalent based on the product property

Convert the given logarithm to its equivalent based on the product property

$$\log_x(y\cdot z)$$

$$\log_x(q\cdot z)$$

Α	$\log_x y + \log_x z$	В	$y \cdot \log_x z$	Α	$\log_x q + \log_x z$	В	$q \cdot \log_x z$
С	$\log_z x + \log_x y$			С	$\log_z x + \log_x q$		

Convert the given logarithm to its equivalent based on the product property

Convert the given logarithm to its equivalent based on the product property

$$\log_z(m\cdot t)$$

\log_r	(y)	•	n)
\cdot \circ r	(9		•••

Α	$\log_z m + \log_z t$	B $m \cdot \log_z t$	$A \qquad log_r y + log_r n$	$B \qquad log_n r + log_r y$
С	$\log_t z + \log_z m$		C $y \cdot \log_r n$	