

mobius

Matrices - Add

(1	Find the resulting
•	matrix for Y + Z

$$egin{aligned} Y = \left[egin{array}{ccc} 7 & 1 \ 9 & 9 \ 7 & 1 \ 9 & 1 \ \end{array}
ight] \end{aligned}$$

$$\begin{bmatrix} 14 & 0 \\ 18 & 10 \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 14 & 2 \\ 18 & 10 \end{bmatrix}_{1}$$

$$Y = \begin{bmatrix} 7 & 1 \\ 9 & 9 \\ 7 & 1 \\ 9 & 1 \end{bmatrix} \begin{bmatrix} 14 & 0 \\ 18 & 10 \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 14 & 2 \\ 18 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 9 \\ 1 & 4 & 2 \\ 9 & 0 & 9 \\ 0 & 8 & 7 \\ 8 & 9 & 2 \\ 6 & 5 & 3 \end{bmatrix} \begin{bmatrix} 16 & 5 & 9 \\ 9 & 7 & 0 \\ 3 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 3 & 1 \\ 9 & 7 & 5 \\ 0 & 7 & 8 \end{bmatrix}$$

$$C = \begin{bmatrix} 3 & 5 & 9 \\ 1 & 4 & 2 \\ 9 & 0 & 9 \\ 0 & 8 & 7 \\ 8 & 9 & 2 \\ 6 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 9 & 13 & 4 \\ 15 & 5 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 9 & 13 & 4 \\ 15 & 5 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 9 & 13 & 4 \\ 15 & 5 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 9 & 13 & 4 \\ 15 & 5 & 12 \end{bmatrix}$$

$$E \begin{bmatrix} 5 & 3 & 2 \\ 0 & 8 & 0 \\ 5 & 0 & 5 \end{bmatrix}$$

Find the resulting matrix for

3 Find the resulting matrix for X + C

$$X = \left[egin{array}{ccc} 5 & 5 \ 1 & 2 \ 9 & 8 \end{array}
ight] \;\; C = \left[egin{array}{ccc} 4 & 5 \ 6 & 0 \ 9 & 2 \end{array}
ight]$$

$$X = \left[egin{array}{c} 5 & 5 \ 1 & 2 \ 9 & 8 \end{array}
ight] \ C = \left[egin{array}{c} 4 & 5 \ 6 & 0 \ 9 & 2 \end{array}
ight] \ P = \left[egin{array}{c} 7 & 3 & 4 \ 9 & 6 & 9 \ 7 & 9 & 2 \end{array}
ight] \ \left[egin{array}{c} 6 & 5 \ 2 & 9 \ 5 & 7 \end{array}
ight] \left[egin{array}{c} 8 & 5 \ 9 & 8 \ 7 & 0 \end{array}
ight] \left[egin{array}{c} 0 & 4 \ 3 & 2 \ 4 & 8 \end{array}
ight] \left[egin{array}{c} 1 & 2 \ 3 & 3 \end{array}
ight] \ R = \left[egin{array}{c} 7 & 6 & 8 \ 1 & 3 & 4 \ 6 & 5 & 2 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \ F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \ F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \ F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 9 \ 13 & 14 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 & 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 \ 10 & 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 \ 10 \ 10 \ 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 \ 10 \ 10 \ 10 \ 10 \end{array}
ight] \left[egin{array}{c} F_{14} & 9 \ 10 \ 10 \ 10 \ 10 \ 10 \end{array}
ight] \left[egin{array}{c} F_$$

$$P = \left[egin{array}{cccc} 7 & 3 & 4 \ 9 & 6 & 9 \ 7 & 9 & 2 \ \hline 7 & 6 & 8 \ 1 & 3 & 4 \ 6 & 5 & 2 \ \end{array}
ight]$$

Í	[*] 3		3 1		B	14 10 13		9 6 14	1	.2 .3 4
	and	ef	ine	d			3 4 5 9 9 2	4 7 9 1 2 6	6. 3	8 4 2
E	14 10 13	9 9 14	12 13 4]						

5 Find the resulting matrix for P + X

$$P = \left[egin{array}{c} 1 \ 7 \end{array}
ight] \ \ X = \left[egin{array}{c} 5 \ 8 \end{array}
ight]$$

$$P = \left[egin{array}{c} 1 \ 7 \end{array}
ight] \;\; X = \left[egin{array}{c} 5 \ 8 \end{array}
ight]$$

$$\begin{bmatrix} 3 & 1 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 6 \end{bmatrix} \begin{bmatrix} 0 \\ 15 \\ 8 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 12 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 15 \end{bmatrix}$$

Find the resulting matrix for Z + X

$$egin{aligned} Z = \left[egin{array}{ccc} 7 & 1 \ X = \left[egin{array}{ccc} 6 & 8 \end{array}
ight] \end{aligned}$$

7 Find the resulting matrix for N + B

$$N = \left[egin{array}{ccc} 9 & 9 \ B = \left[egin{array}{ccc} 6 & 6 \end{array}
ight]$$

Α	[6 8]	B [15 1	5]
С	[5 8]	D [9 9 6 6]	
E	[84]		

8

6

Find the resulting matrix for P + D

$$P = \left[egin{array}{ccc} 4 & 8 \ 8 & 1 \ 3 & 5 \end{array}
ight] \quad D = \left[egin{array}{ccc} 5 & 6 \ 5 & 3 \ 8 & 6 \end{array}
ight]$$

$$\begin{bmatrix} 4 & 5 \\ 2 & 7 \\ 7 & 2 \end{bmatrix} \begin{bmatrix} B & 14 \\ 13 & 4 \\ 11 & 11 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 14 \\ 12 & 4 \\ 11 & 11 \end{bmatrix} \begin{bmatrix} E \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$$