

mobius

Patterning - Equation for Decreasing Arithmetic Pattern

Find the correct equation to describe this decreasing pattern where n=1 is the first term	23, 18, 13, 8	Find the correct equation to describe this decreasing pattern where n=1 is the first term	13, 10, 7, 4
$a_n = 23 - 8(n-1)$	$\overset{\mathtt{B}}{a}_{n}=23-5(n-1)$	$^{A}a_n=a_{n-2}+a_{n-1}$	$\overset{\scriptscriptstyleB}{a}_n = 13 - 1(n-1)$
$\ddot{a}_n = 23 + 5(n-1)$	$^{ extsf{D}}a_n=a_{n-2}+a_{n-1}$	$\ddot{a}_n = 13 + 3(n-1)$	$\overset{\mathtt{D}}{a}_{n}=13-3(n-1)$
$oxedsymbol{^{E}} a_n = 23 imes 5^{n-1}$	$^{F} a_n = 23 - 5(n)$	$^{E} \ a_n = 13 - 3(n)$	$egin{aligned} ar{a}_n &= 13 - 0(n-1) \end{aligned}$
Find the correct equation to	20 22 40 42 0	Find the correct equation to describe this decreasing pattern where n=1 is the first term	$\overset{A}{=} a_n = 11 - 2(n-1)$
describe this decreasing pattern where n=1 is the first term	28, 23, 18, 13, 8		$egin{array}{cccccccccccccccccccccccccccccccccccc$
$a_n=28-5(n-1)$	$\overset{B}{a}_n = 26 - 5(n-1)$	11, 9, 7, 5	$a_n = 11 + 2(n-1)$
$oxed{^{ extsf{c}}a_n=a_{n-2}+a_{n-1}}$	$a_m = 28 - 5(n)$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
	$ar{a}_n = 28-2(n-1)$		$egin{aligned} F & a_n = 11 - 2(n) \ & F & a_n = 11 - 0(n-1) \end{aligned}$
$a_n = 20 0(n 1)$	$a_n = 20$ $2(n-1)$		$a_n = 11 - 0(n-1)$
Find the correct equation to describe this decreasing pattern where n=1 is the first term	16, 13, 10, 7, 4	Find the correct equation to describe this decreasing pattern where n=1 is the first term	27, 21, 15, 9
$^{A} \ a_n = 16 - 3(n)$	$egin{aligned} \mathbf{B}_n &= 16 + \mathbf{3(n-1)} \end{aligned}$	$^{A} \ a_n = 27 - 6(n)$	$\stackrel{B}{a}_n = 28 - 6(n-1)$
$\overset{\mathtt{C}}{a}_{n}=16-\mathbf{3(}n-\mathbf{1)}$	$^{ extsf{D}}$ $a_n= extsf{16} imes extsf{3}^{n-1}$	$egin{array}{c} a_n = extstyle 27 imes extstyle 6^{n-1} \end{array}$	$\overset{ extsf{D}}{a}_{n}=27-6(n-1)$
$oxed{E} a_n = a_{n-2} + a_{n-1}$	$egin{aligned} ar{a}_n &= 16-4(n-1) \end{aligned}$	$egin{aligned} \ddot{a}_n = 27 + 6(n-1) \end{aligned}$	$egin{aligned} ar{a}_n = 27 - 7(n-1) \end{aligned}$
Find the correct equation to describe this decreasing pattern where n=1 is the first term	32, 26, 20, 14, 8	Find the correct equation to describe this decreasing pattern where n=1 is the first term	11, 9, 7, 5, 3
$a_n=32-6(n-1)$	$^{B}a_n=a_{n-2}+a_{n-1}$	$^{A}a_n = 9 - 2(n-1)$	$\overset{\mathtt{B}}{a}_{n} = 112(n-1)$
$a_n = 32 imes 6^{n-1}$	$^{ extsf{D}}$ $a_n=32-6(n)$	$a_n = 11 imes 2^{n-1}$	$^{ extsf{D}}a_n=a_{n-2}+a_{n-1}$
$a_n = 32 - 9(n-1)$	$ar{a}_n=29-6(n-1)$	$oxed{E} a_n = 11 - 2(n)$	$oxed{ar{a}_n = 11 - 2(n-1)}$