

## mobius

## Patterning - Equation for Increasing Arithmetic Pattern



| Find the correct equation to describe this increasing pattern where n=1 is the first term | $egin{array}{cccc} {\sf A} & a_n = 1 + 7(n-1) \ & & & & & & & & & & & & & & & & & & $ | Find the correct equation to describe this increasing pattern where n=1 is the first term             | 3, 8, 13, 18                                                                      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1, 4, 7, 10                                                                               | $egin{array}{cccc} a_n = 1 	imes 3^{n-1} \ & a_n = a_{n-2} + a_{n-1} \ & \end{array}$ | $^{A}  a_n = 3 \times 5^{n-1}$                                                                        | $^{B}a_n=3+5(n-1)$                                                                |
| 1, 7, 1, 10                                                                               | $oxed{E} \ a_n = 1 + 3(n-1)$                                                          | $^{\mathtt{C}}a_{n}=3-5(n-1)$                                                                         | $^{	extsf{D}}$ $a_n=3+5(n)$                                                       |
|                                                                                           | $^{F} \ a_n = 1 - 3(n - 1)$                                                           | $\overset{\mathtt{E}}{a}_{n}=1+5(n-1)$                                                                | $a_n = 4 + 5(n-1)$                                                                |
| Find the correct equation to describe this increasing pattern where n=1 is the first term | 2, 6, 10, 14, 18                                                                      | Find the correct equation to describe this increasing pattern where n=1 is the first term  2, 4, 6, 8 | $a_n = 2 + 2(n)$                                                                  |
|                                                                                           |                                                                                       |                                                                                                       | $egin{array}{ccc} B & a_n = 2 - 2(n-1) \ & C & a_n = 2 	imes 2^{n-1} \end{array}$ |
| $^{A}a_n = 2 + 4(n-1)$                                                                    | $^{\mathtt{B}}a_{n}=a_{n-2}+a_{n-1}$                                                  |                                                                                                       | $oxed{ egin{array}{cccccccccccccccccccccccccccccccccccc$                          |
| $^{\mathtt{c}}\ a_{n}=\mathtt{2}+\mathtt{4}(n)$                                           | $egin{array}{ccc} a_n = 2 	imes 4^{n-1} \end{array}$                                  |                                                                                                       |                                                                                   |
| $a_n = 5 + 4(n-1)$                                                                        | $a_n = 2 + 0(n-1)$                                                                    |                                                                                                       | $^{F} \ a_n = 2 + 2(n-1)$                                                         |
| Find the correct equation to describe this increasing pattern where n=1 is the first term | 3, 5, 7, 9, 11                                                                        | Find the correct equation to describe this increasing pattern where n=1 is the first term             | $egin{array}{cccc} {\sf A} & a_n=3+2(n-1) \ & & & & & & & & & & & & & & & & & & $ |
| $oxed{egin{array}{cccccccccccccccccccccccccccccccccccc$                                   | $B_{\alpha} = \alpha + \alpha$                                                        |                                                                                                       | $oxed{c} a_n = 2 + 2(n-1)$                                                        |
|                                                                                           | $a_n = a_{n-2} + a_{n-1}$                                                             | 3, 5, 7, 9                                                                                            | $a_n = 3 + 6(n-1)$                                                                |
| $\overset{\mathtt{c}}{a}_{n}=2+2(n-1)$                                                    |                                                                                       |                                                                                                       | $E  a_n = 3 + 2(n)$                                                               |
| $a_n = 3 - 2(n-1)$                                                                        | $a_n = 3 + 0(n-1)$                                                                    |                                                                                                       | $  ^{\sf F} \; a_n = {\sf 3} + {\sf 4}(n-1)$                                      |
| Find the correct equation to describe this increasing pattern where n=1 is the first term | 1, 6, 11, 16                                                                          | Find the correct equation to describe this increasing pattern where n=1 is the first term             | 3, 7, 11, 15                                                                      |
| $^{A}a_n = 1 + 3(n-1)$                                                                    | $egin{array}{ccc} B & a_n = 1 	imes 5^{n-1} \end{array}$                              | $^{A} \ a_n = 3 + 4(n)$                                                                               | $^{B}a_n=3+0(n-1)$                                                                |
| $^{\mathtt{C}}\!a_{n}=1+8(n-1)$                                                           | $^{	extsf{D}}a_{n}=1-5(n-1)$                                                          | $^{\mathtt{c}}a_{n}=\mathtt{3}+\mathtt{4}(n-\mathtt{1})$                                              | $^{	extstyle{D}}\!a_n = 6 + 4(n-1)$                                               |
| $\stackrel{E}{=} a_n = 1 + 5(n)$                                                          | $\overset{	extsf{F}}{a}_{n}=1+5(n-1)$                                                 | $a_n = 3 + 3(n-1)$                                                                                    | $oxed{F} a_n = 3 	imes 4^{n-1}$                                                   |