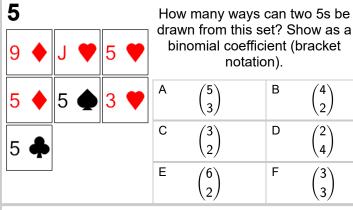



## mobius

## **Probability Counting - Choose N Cards** from M, Count of Favorable Outcomes -




| T. D.                                                                  |                                                                             | NI - 4 -                               | 4!                                     |                                                                                  |                                                                                                                       |                                                                                                                         |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| How many ways car workings be drawn from this set? Show as a binomial  | $\binom{2}{4}$                                                              | $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ | $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ | 2<br>3 ♣ 6 ♥ A ♠                                                                 | How many ways<br>drawn from this s<br>binomial coeffic<br>notation                                                    | et? Show as a<br>cient (bracket                                                                                         |
| 7 <b>V</b> K                                                           | $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$                                      | $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ |                                        | 5 <b>♠</b> 6 <b>♦</b> 4 <b>♣</b> 6                                               | A $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ C $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ E $\begin{pmatrix} 3 \end{pmatrix}$ | $ \begin{array}{ccc} B & \begin{pmatrix} 2 \\ 3 \end{pmatrix} \\ D & \begin{pmatrix} 5 \\ 4 \end{pmatrix} \end{array} $ |
| How many ways can two Kings be drawn from this set? Show as a binomial | $\begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ | (4)<br>(3)                             | $\binom{5}{2}$                         | How many ways can Kings be drawn from set? Show as a binon coefficient (pracket) | this /3                                                                                                               | $\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$                                             |



$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$



| (3)            | (2)            | $\binom{2}{2}$ |
|----------------|----------------|----------------|
| $\binom{2}{3}$ | $\binom{5}{3}$ | $\binom{4}{4}$ |
|                |                |                |



| binomial coefficient (bracket notation). |                |   |                |  |
|------------------------------------------|----------------|---|----------------|--|
| Α                                        | $\binom{5}{3}$ | В | $\binom{4}{2}$ |  |
| С                                        | $\binom{3}{2}$ | D | $\binom{2}{4}$ |  |
| E                                        | $\binom{6}{2}$ | F | $\binom{3}{3}$ |  |

| 4 | •        | 2 | <b>•</b> | 2 | • |
|---|----------|---|----------|---|---|
| 2 | <b>♣</b> | 8 | <b>♣</b> |   |   |
|   |          |   |          |   |   |

| binomial coefficient (bracket notation). |                |   |                |  |
|------------------------------------------|----------------|---|----------------|--|
| Α                                        | $\binom{3}{2}$ | В | $\binom{2}{3}$ |  |
| С                                        | $\binom{4}{2}$ | D | $\binom{3}{3}$ |  |
|                                          |                |   |                |  |

How many ways can two 2s be

drawn from this set? Show as a

| 6 🏚 | 5 | •        | Q | •        |
|-----|---|----------|---|----------|
| 5 🏚 | 2 | <b>♣</b> | 5 | <b>♣</b> |
| 5 🔷 |   |          |   |          |

How many ways can two 5s be drawn from this set? Show as a binomial coefficient (bracket notation)

| ╛ | notation). |                |   |                |  |
|---|------------|----------------|---|----------------|--|
| • | Α          | $\binom{2}{4}$ | В | $\binom{4}{2}$ |  |
|   | С          | $\binom{5}{2}$ | D | $\binom{6}{2}$ |  |
|   | E          | $\binom{3}{3}$ | F | $\binom{3}{2}$ |  |

| 3 <b>4</b> | s set? Sho<br>rapket |     |
|------------|----------------------|-----|
| Q <b>♦</b> | K <b>♦</b>           | 5 🏚 |
|            |                      |     |

| How many ways can two<br>Jacks be drawn from<br>this set? Show as a | <sup>A</sup> 3\  | <sup>B</sup> (3) | <sup>c</sup> /4\ |
|---------------------------------------------------------------------|------------------|------------------|------------------|
| binomial coefficient  bracket attion)                               | (2)              | (3)              | (2)              |
| <b>♦ K ♦</b> 5 <b>♦</b>                                             | <sup>D</sup> (5) | <sup>E</sup> /2\ | <sup>F</sup> 4   |
| •                                                                   | (3)              | (3)              | <b>4</b>         |