

mobius

Probability Counting - Ways to Order 3 Cards, 0 Repeats - to Equation

1

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	$\frac{3\cdot 2}{3\cdot 2}$	В	$\frac{3\cdot 2}{3\cdot 2\cdot 1}$
С	3 · 2	D	$\frac{3\cdot 2}{1\cdot 2}$

2

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	3 · 2	В 3·2
	$\overline{1\cdot 3\cdot 2}$	$\overline{3\cdot 2\cdot 1}$
С	3 · 2	$D \qquad \frac{3\cdot 2}{2}$
E	$\frac{3\cdot 2}{1\cdot 2}$	

How many distinct ways can these cards be ordered? Show as a

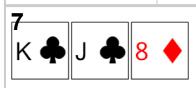
^A 3 · 2	8 3⋅2
2	$\overline{1\cdot 2}$
°3 · 2	$\frac{{}^{D} \ 3 \cdot 2}{3 \cdot 2 \cdot 1}$
5 · 4 · 3 · 2	4 · 3 · 2
3 + 3 2	2

4

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	$\frac{3\cdot 2}{3\cdot 2\cdot 1}$	^B 4 · 3 · 2	<u> </u>
С	3 · 2	D 3·2	
	2	3 · 2	
E	3 · 2	F 3 · 2	
	5 2	$\overline{1\cdot 2}$	

5


How many distinct ways can these cards be ordered? Show as a multiplication.

Α	3 · 2	В	3 · 2
	$\overline{1\cdot 3\cdot 2}$		$\overline{1\cdot 2}$
С	3 · 2	D	3 · 2
	$\overline{3\cdot 2\cdot 1}$		3 · 2
Е	3 · 2		

How many distinct ways can these cards be ordered? Show as a

^ 3 · 2	⁵ 3 · 2
$\overline{3\cdot 2}$	$\overline{3\cdot 2\cdot 1}$
c 5 · 4 · 3 · 2	^D 3 · 2
^E 3⋅2	

How many distinct ways can these cards be ordered? Show as a multiplication.

^A 3 · 2	3	2
$\overline{3\cdot 2\cdot 1}$	J	_

8

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	3 · 2	В	3 · 2	
	$\overline{3\cdot 2}$		5 . 2	
С	3 · 2	D	3 · 2	
	$\overline{3\cdot 2\cdot 1}$		2	
Е	$4 \cdot 3 \cdot 2$			
	2			