

mobius

1					
9	•	9	•	9	•

How many distinct ways can these cards be ordered? Show as a multiplication.

9	•	9	•	9	•

Α	3 · 2	B 4·3·2
	$\overline{3\cdot 2}$	3 · 2
С	$4 \cdot 3 \cdot 2$	D 4·3·2
	$\overline{4\cdot 3\cdot 2\cdot 1}$	$\overline{5\cdot 4\cdot 3\cdot 2}$
Ε	$4 \cdot 3 \cdot 2$	
	$\overline{4\cdot 3\cdot 2}$	

-,	
_	

6	♣	5	•	6	♣

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	$4 \cdot 3 \cdot 2$	В	$4 \cdot 3 \cdot 2$	
	2		$\overline{2\cdot 3\cdot 2}$	
С	$4 \cdot 3 \cdot 2$	D	$4 \cdot 3 \cdot 2$	
	$\overline{4\cdot 3\cdot 2\cdot 1}$		$\overline{4\cdot 3\cdot 2}$	

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	3 · 2	В	4 ·
	$\overline{3\cdot 2}$		3 ·
С	4 · 3 · 2	D	4 ·
	$\overline{5\cdot 4\cdot 3\cdot 2}$		3
Е	$4 \cdot 3 \cdot 2$		
	1 2 2 1		

4

 $\frac{3 \cdot 2}{2 \cdot 2}$ $\frac{3 \cdot 2}{3 \cdot 2}$

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	$4 \cdot 3 \cdot 2$	B 4·3·2	
	$\overline{4\cdot 3\cdot 2}$	5 · 4 · 3 ·	2
С	3 · 2	D 4·3·2	
	$\overline{3\cdot 2}$	4 · 3 · 2 ·	1
Е	$4 \cdot 3 \cdot 2$	F 4 · 3 · 2	
	3 · 2	3 · 2 · 2	

5

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	4 · 3 · 2	В	4 · 3 · 2
	3 · 2		$\overline{4\cdot 3\cdot 2\cdot 1}$
С	$4 \cdot 3 \cdot 2$	D	3 · 2
	$\overline{5\cdot 4\cdot 3\cdot 2}$		3 · 2

6

How many distinct ways can these cards be ordered? Show as a multiplication.

Α	$\frac{4\cdot 3\cdot 2}{2\cdot 3\cdot 2}$	В	$\frac{3\cdot 2}{2}$	
С	$\frac{4\cdot 3\cdot 2}{2\cdot 2}$	D	$\frac{4\cdot 3\cdot 2}{2}$	
Ε	$\frac{4\cdot 3\cdot 2}{4\cdot 3\cdot 2\cdot 1}$			
			_	

7

How many distinct ways can these cards be ordered? Show as a

^A 4 · 3 · 2	4 · 3 · 2
$4 \cdot 3 \cdot 2 \cdot 1$	3 · 2
⁶ 4 · 3 · 2	$5 \cdot 4 \cdot 3 \cdot 2$
$\overline{2\cdot 3\cdot 2}$	$3 \cdot 2 \cdot 3 \cdot 2$
E 6 · 5 · 4 · 3 · 2	
2 · 3 · 2	

How many distinct ways can these cards be ordered? Show as a

A 6 · 5 · 4 · 3 · 2	^B 4 · 3 · 2
3 · 2	$5 \cdot 4 \cdot 3 \cdot 2$
^C 4 · 3 · 2	D 6 · 5 · 4 · 3 · 2
$\overline{4\cdot 3\cdot 2\cdot 1}$	3 · 2 · 3 · 2
^E 4 · 3 · 2	4 · 3 · 2
3.2.3.2	2 2