

mobius

Probability - Coins (4), Not All Same, To Fraction Equation

1	What is the equation for
ı	the chance of flipping a
	mixed set (not all heads
	or all tails) on these
	coins?

_	1	1	В 1 — 1	1	1
$\overline{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$1-\frac{1}{2}$	$\frac{1}{2}$	2

$$\begin{bmatrix} c \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} D \\ \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2} \end{bmatrix}$$

What is the equation for the chance of flipping a mixed set (not all heads or all tails) on these coins?

Α					В			
1	1	1	1	1	1	1	1	1
1 -	2	2	2	2	1 -	$\overline{2}$	$\cdot \frac{1}{2}$	2

$$\left| \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right|^{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$$

$$\begin{vmatrix} A & 1 & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

$$\begin{vmatrix} C \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix} \begin{vmatrix} D \\ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

What is the equation for the chance of flipping a mixed set (not all heads or all tails) on these coins?

$$\begin{vmatrix} A \\ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix} = \begin{vmatrix} A \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

$$\left| \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right|^{1-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$$

$$\left| \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right|^{\mathsf{B}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\begin{bmatrix} C \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{bmatrix} \begin{bmatrix} D \\ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{bmatrix}$$

What is the equation for the chance of flipping a mixed set (not all heads or all tails) on these coins?

$$\left| \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right|^{1-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$$

$$\begin{vmatrix} c \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

$$\left|\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\right|^{\mathsf{B}}_{1-\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}}$$

$$\begin{vmatrix} c \\ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix} = \begin{vmatrix} c \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

$$\begin{vmatrix} A \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix} = \begin{vmatrix} A \\ 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \end{vmatrix}$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$