

mobius

Probability Counting - Duplicate Orders in 5 Letters, 2 Repeat - to Equation

How many ways can these letter tiles be ordered to spell 'VIVID'? V I V D	$ \begin{array}{c c} ^{A} 2 \cdot 2 & \frac{B}{2 \cdot 2} \\ ^{C} 4 \cdot 3 \cdot 2 \cdot 2 & \frac{1}{2 \cdot 2} \\ ^{E} 2 \cdot 4 \cdot 3 \cdot 2 & \frac{F}{3} \cdot 2 \cdot 2 \end{array} $	How many ways can these letter tiles be ordered to spell M A M M A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
How many ways can these letter tiles be ordered to spell E L E L	$\begin{bmatrix} \frac{A}{2} \cdot 4 \cdot 3 \cdot 2 & \frac{B}{2} \cdot 3 \cdot 2 \\ \frac{C}{2 \cdot 2} & 2 \cdot 2 \end{bmatrix} \cdot 2 \cdot 2$	How many ways can these letter tiles be ordered to spell P A P P A	$ \frac{A}{3 \cdot 2 \cdot 2} = \frac{2}{4 \cdot 3 \cdot 2 \cdot 2} $ $ \frac{C}{3 \cdot 2 \cdot 4 \cdot 3 \cdot 2} = \frac{D}{3 \cdot 2 \cdot 2} $ $ \frac{E}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 2} = \frac{1}{3 \cdot 2 \cdot 2} $
How many ways can these letter tiles be ordered to spell D A D D A	$\begin{bmatrix} \frac{A}{3 \cdot 2 \cdot 2} & \frac{B}{3 \cdot 2 \cdot 4 \cdot 3 \cdot 2} \\ \frac{C}{3 \cdot 2 \cdot 3 \cdot 2} & \frac{D}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 2} \\ \frac{E}{3 \cdot 2 \cdot 2} & \frac{1}{3 \cdot 2 \cdot 2} \end{bmatrix}$	M A M	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
How many ways can these letter tiles be ordered to spell P A P P A	$ \begin{array}{c} A \\ 3 \cdot 2 \cdot 3 \cdot 2 \\ C \\ 2 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \end{array} $ $ \begin{array}{c} D \\ 2 \cdot 3 \cdot 2 \end{array} $ $ \begin{array}{c} E \\ 4 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \end{array} $ $ \begin{array}{c} F \\ 2 \cdot 3 \cdot 2 \end{array} $	How many ways can these letter tiles be ordered to spell A R	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$