

mobius

Probability Counting - Ways to Order 3 Letters, 0 Repeats - to Equation

1	
	F

How many distinct ways can these letter tiles be ordered? Show as a multiplication.

Α	$5\cdot 4\cdot 3\cdot 2$	B 5 · 4 · 3 · 2	
	3 · 2	2	
С	3 · 2	D 3·2	
	$\overline{1\cdot 2}$	$\overline{1\cdot 3\cdot 2}$	
Е	3 · 2	F 3·2	
	5 . 2	$\overline{3\cdot 2\cdot 1}$	

How many distinct ways can these letter tiles be ordered? Show as a

^A 3 · 2	В 3⋅2
2	3 · 2
$\frac{^{c}\ 3\cdot 2}{1\cdot 3\cdot 2}$	5 · 4 · 3 · 2
⁵3 ⋅ 2	$\frac{3\cdot 2}{3\cdot 2\cdot 1}$

3

G

How many distinct ways can these letter tiles be ordered? Show as a multiplication.

Α	3 · 2	$\begin{array}{c c} B & 3 \cdot 2 \\ \hline & 3 \cdot 2 \cdot 1 \end{array}$	
С	3 · 2	D 3·2	
	$\overline{1\cdot 3\cdot 2}$	$\overline{3\cdot 2}$	
Е	3 · 2		

4

How many distinct ways can these letter tiles be ordered? Show as a multiplication.

Α	3 · 2	В	3 · 2
	$\overline{1\cdot 3\cdot 2}$		$\overline{3\cdot 2\cdot 1}$
С	3 · 2	D	3 · 2
			$\overline{3\cdot 2}$
E	3 · 2		

How many distinct ways can these letter tiles be ordered? Show as a

^A 5 · 4 · 3 · 2	В	3 · 2
3 4 3 2		2

c 3 · 2	^D 3·2
$\overline{3\cdot 2\cdot 1}$	3 · 2
E 0	

How many distinct ways can these letter tiles be ordered? Show as a

Α			В	
3	•	2	5 · 4 · 3	2

7

How many distinct ways can these letter tiles be ordered? Show as a multiplication.

Α	3 · 2	B 5 · 4 · 3 · 2
	2	2
С	3 · 2	^D 4·3·2
Е	3 · 2	
	$\overline{3\cdot 2\cdot 1}$	

8

How many distinct ways can these letter tiles be ordered? Show as a multiplication.

Α	3 · 2	В	3 · 2
	$\overline{1\cdot 2}$		$\overline{3\cdot 2}$
С	3 · 2	D	3 · 2
	$\overline{1\cdot 3\cdot 2}$		$\overline{3\cdot 2\cdot 1}$
E	4 · 3 · 2	F	3 · 2