

mobius

Probability Counting - Ways to Order 4 Letters, 0 Repeats - to Factorial Equation

			- quantion
	How many distinct ways can these letter tiles be ordered?	2	How many distinct ways can these letter tiles be ordered?
BQW	Show as a factorial.	BCK	Show as a factorial.
M	$\begin{array}{c cccc} A & \frac{4!}{3!} & & B & 6! \end{array}$	Q	A $\frac{6!}{4!}$ B $\frac{4!}{4! \cdot 0!}$
	C $\frac{4!}{4! \cdot 0!}$ D $\frac{4!}{1! \cdot 3!}$		$\frac{C}{1! \cdot 3!}$ D 5!
	$\begin{array}{c cc} E & \underline{6!} & F & \underline{4!} \end{array}$		$\frac{1}{3!}$ F 4!
3 0 I C	How many distinct ways can these letter tiles be ordered? Show as a factorial.	4 A Z E	How many distinct ways can these letter tiles be ordered? Show as a factorial.
K	^A 3! ^B 5!	В	A 4! B $\frac{4!}{1! \cdot 3!}$
	C 6! $\frac{D}{1! \cdot 3!}$		C 6! D $\frac{4!}{4! \cdot 0!}$
	$\frac{1}{4! \cdot 0!}$ F 4!		E 3! $\frac{1! \cdot 2!}{1! \cdot 2!}$
5	How many distinct ways can these letter tiles be ordered? Show as a factorial.	6 S Q X	How many distinct ways can these letter tiles be ordered? Show as a factorial.
Y	A 4! B 5!	F	A 6! B $\frac{4!}{4! \cdot 0!}$
	$\frac{C}{3!}$ $\frac{4!}{3!}$ $\frac{D}{3!}$		$ \begin{array}{c cc} C & 4! \\ \hline 1! \cdot 2! \end{array} $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 E H A	How many distinct ways can these letter tiles be ordered? Show as a factorial.	8 S Q D	How many distinct ways can these letter tiles be ordered? Show as a factorial.
D	$ \begin{array}{c ccccc} A & \underline{4!} & B & \underline{4!} \\ \hline 4! \cdot 0! & \underline{1! \cdot 2!} \end{array} $	H	A 3! $\frac{B}{1! \cdot 3!}$
	C 4! D 4! 2!		$ \begin{array}{c cccc} C & 4! & D & 4! \end{array} $
			E 4! F 6!

4!

 $\overline{1! \cdot 2!}$