

mobius

Probability Counting - Ways to Order 5 Letters, 0 Repeats - to Factorial Equation

	etters, o repeats		- quality
1 W F B	How many distinct ways can these letter tiles be ordered? Show as a factorial.	2 N Y J	How many distinct ways can these letter tiles be ordered? Show as a factorial.
RJ	A $\frac{5!}{5! \cdot 0!}$ B 5!	OD	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	C <u>5!</u> 1! · 3!		^C 4! ^D 5!
			E <u>5!</u> 2!
3 O H P	How many distinct ways can these letter tiles be ordered? Show as a factorial.	4 V W B	How many distinct ways can these letter tiles be ordered? Show as a factorial.
EZ	A $\frac{5!}{2!}$ B 4!	OE	A 5! $\frac{B}{5! \cdot 0!}$
	$\frac{C}{1! \cdot 3!}$ $\frac{5!}{5!}$		$\frac{C}{1! \cdot 2!}$ $\frac{5!}{1! \cdot 2!}$
	$\begin{bmatrix} E & \frac{5!}{5! \cdot 0!} & F & \mathbf{6!} \end{bmatrix}$		
5 E J L	How many distinct ways can these letter tiles be ordered? Show as a factorial.	6 A U Q	How many distinct ways can these letter tiles be ordered? Show as a factorial.
N S	A $\frac{5!}{2!}$ B 4!	JT	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{C}{1! \cdot 3!}$ $\frac{5!}{5!}$		$\frac{C}{2!}$ $\frac{6!}{2!}$ $\frac{D}{5!}$
	E 5! 5! 5! · 0!		E 3!
7 F D H	How many distinct ways can these letter tiles be ordered? Show as a factorial.	8 E J W	How many distinct ways can these letter tiles be ordered? Show as a factorial.
VII	$\begin{bmatrix} A & \frac{7!}{3!} & B & 7! \end{bmatrix}$	QC	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c c} C & \frac{5!}{5! \cdot 0!} & D & 3! \end{array}$		C 5! D 5! 5! 5! • 0!
	^E 5!		$\begin{array}{c cccc} E & \frac{5!}{2!} & F & 7! \end{array}$