

mobius

Probability Counting - Ways to Order 5 Letters, 1 Repeat - to Factorial Equation

		_	
	How many distinct ways can these letter tiles be ordered? Show as a factorial.	2 R Q E	How many distinct ways can these letter tiles be ordered? Show as a factorial.
CO	A $\frac{6!}{3!}$ B $\frac{5!}{3!}$	KE	A $\frac{4!}{2!}$ B $\frac{5!}{2! \cdot 2!}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C <u>5!</u> D <u>5!</u> 2!
	E <u>5!</u> 4!		E $\frac{3!}{2!}$ F $\frac{5!}{5! \cdot 0!}$
3 O L L	How many distinct ways can these letter tiles be ordered? Show as a factorial.	4 F I D	How many distinct ways can these letter tiles be ordered? Show as a factorial.
UJ	A $\frac{5!}{2!}$ B $\frac{5!}{3!}$		A <u>5!</u> B <u>5!</u> 5!
	C $\frac{5!}{5! \cdot 0!}$ D $\frac{4!}{2!}$		C $\frac{5!}{5! \cdot 0!}$ D $\frac{5!}{3!}$
	E <u>5!</u> 4!		E 4! 3!
5 I U	How many distinct ways can these letter tiles be ordered? Show as a factorial.	6 V V Z	How many distinct ways can these letter tiles be ordered? Show as a factorial.
NM	A $\frac{4!}{2!}$ B $\frac{5!}{2!}$	VN	A $\frac{5!}{5! \cdot 0!}$ B $\frac{5!}{3!}$
	C $\frac{5!}{2! \cdot 3!}$ D $\frac{5!}{5! \cdot 0!}$		$ \begin{array}{c cccc} C & 7! & D & 5! \\ \hline 3! & 4! \end{array} $
	E $\frac{5!}{3!}$ F $\frac{3!}{2!}$		E $\frac{4!}{3!}$ F $\frac{5!}{5!}$
7 S G R	How many distinct ways can these letter tiles be ordered? Show as a factorial.	8 E J E	How many distinct ways can these letter tiles be ordered? Show as a factorial.
SS	$ \begin{array}{c cccc} A & & 5! & & B & & 5! \\ \hline & & 5! & & & 2! \cdot 3! \end{array} $	XL	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	C $\frac{7!}{3!}$ D $\frac{5!}{5! \cdot 0!}$		$ \begin{array}{c cccc} C & 5! & D & 5! \\ \hline 5! \cdot 0! & 2! & 2! \end{array} $
	E <u>5!</u> 3!		E 4! 2!